CDF

Visual Basic Reference Manual

Version 3.6.2, March 20, 2016

Space Physics Data Facility
NASA / Goddard Space Flight Center

Copyright © 2016

Space Physics Data Facility
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 (U.S.A.)

This software may be copied or redistributed as long as it is not sold for profit, but it can be incorporated into any other
substantive product with or without modifications for profit or non-profit. If the software is modified, it must include
the following notices:

- The software is not the original (for protection of the original author’s reputations from any problems introduced
by others)

- Change history (e.g. date, functionality, etc.)

This Copyright notice must be reproduced on each copy made. This software is provided as is without any express or
implied warranties whatsoever.

Internet — gsfc-cdf-support@1lists.nasa.gov

Contents

1 CompilingC....".....C.....'C....'.....'C....C.....'.....C.....'C...."...".....C.....'C....'.....'C....C....".....C.. 1
L1 INGAIIESPACES ..ottt sttt ettt ettt st e et e st e s h e e e et e bt e s b e e ae e s et e e saae et e e saeeesbeesneeeneesaneeaneas 1
1.2 BASE CLASSES ..eueiurieiiiiieiieitcete ettt ettt ettt ettt ettt et sat e bt s ae e bt s e e bt e e bt e b e bt eea e e ae et saeenae st e aeeanenreeanens 1
1.3 Compiling with COmPIler OPLIONSccceeiuieiiriieiiriieieriete ettt ettt e ae et eae st esaesaeesaeeanesreeanens 2
1.4 SAMPIE PIOZIAIIS ..c..eenvieiiiiieieiiieie ittt ettt ettt et s e sat et sae e bt s e e bt e as e bt ease bt esaesseesaeeaeessesaeennesueeaeennensesanens 3

2 Programming INTErfacecocceieeicsnnicnscnnicsssnniccssnsecssssssesssssscsssssssssssssssssnsssssse D

2.1 M REFEIENCING ..ccueiiieiiiiiiiiiiiee ettt ettt ettt et e e e saeeaesaeeaeeaeesneeanenreeanens 5
2.2 COMPALIDIE TYPES ...ueiuieuiiriiiieiiieieeteete ettt ettt ettt ettt e e st e e st a e e as e aeea e b e et et e et e bt e et eae e et eate bt eaeesneeanenreeanens 5
2.3 CDFCONSLANLScuvieuviiieitieitete et ettt ettt eet et eseesteesaesaeessesate st eaee st ease st ea s e st esse st easeeseesseeaeenseeueensesneenseennenseeanens 6
24 CDF STATUS ..cuvieitiiieieeitete ettt ettt ettt e et e et e st e est e eaeesae s ae e st e aee st e as e st ea s e bt eas et e e st e st esa e eae e et eatenaeeaeenneennenreeanen 6
2.5 CDF FOIMALSoouiiiiiiieiiiiteieetete ettt ettt ettt et et et st e st st e st s s e st ea s e bt eas et e ess e bt essesueesaeeneensesanenaeennenseeanens 6
2.0 CDEF DaAta TYPES ..eeuveueeutiriieieeiteie ettt ettt ettt et stt ettt et st e st st e st s s e aeeas e bt eas et e ess e e st esaeeueemsesaeensesaeenseennenseeanens 6
2.7 DaAtad ENCOGINGSeeutiiieuiiiiieieeiterieee ettt ettt ettt ettt sttt st a e s ase bt ea e beees et e e s e e bt e st eaeesaeeaeennesanenaeennenueeanens 8
2.8 DaAtd DECOAINESeouviuieuiiriiiieiiieieet ettt ettt ettt et et et st et e st e st s s e bt ea s e bt eas e bt ess e e bt esaesaeesaeeueensesaeesaeennenaeeanens 9
2.9 Variable MajOritiescceoieriirieriiiieieeteteeteet ettt ettt ettt et st et s a e e b e e s et e s e e bt e st saeesaesaeenaeeaeenneeanenreeanens 9
2.10 Record/DIimension VATTAINCEScceeverreererteerentieeenteeresteesesueesesaeessesueessesueesesssensessnenseessenseensesseensesseennennes 10
211 COMPIESSIONS ..uvieurinrieureieenteritetesitetestte e e e teeas et e eas e st essesaeessesutensesatesaesaeensesueessesssensesanenseeasenseenseseennesaeennenaee 10
212 SPATSEIIESS ..ueveintieureteeurerttentesttestesueessesut et eus et e eas et e eae e st e e s e et eaa e sa e e st saeesae s h e a e e ae b e s ae et eas et e s et e eaneneennenaeennenae 11

2,121 SPArSE RECOTAS ...coniiiiiiieiiiiicteeet ettt ettt e a e st st et sane b e s e s beeanesaeenneeae 11

2122 SPATSE ATTAYS ..eouveiieiieiieteeitete ettt et et et e st e e st e s e sae et e sus e bt eas et e eas e st e esaesuee st sate st saee st ean e beeanenheenneeueennene 12
2,13 AIIDULE SCOPES .eveineieiiiiieie ittt ettt et a ettt st ae st e st et eas et e e en e e s eeneennenaeennenaee 12
2.14 REAd-ONLY MOGESeouiiiiiiiiiieieiteteet ettt ettt et e st st ae s e s et sas et e s e st eanesaeennesaeennenaee 12
215 ZIMIOAES .ottt e s a e sttt s a b e a et e as et ae e n e ean e neeanenaeennenae 12
216 2010 10 0.0 MOAES ...ttt ettt ettt et st st st st sttt e n e ae e sae e naee 13
2017 Operational LIMIEScocuiiiiiiiiieieiieteeit ettt ettt e st e besae et sttt e neeanesaeennenaee 13
2.18 Limits of Names and Other Character SrNESccccoievierieriinierenieieneete sttt et ee e eee s enenaee 13
2.19 Backward File Compatibility With CDEF 2.7c..cciiiiiiiiiiiiiiinieeitctereeeee ettt 13
220 CRECKSUI ...ttt ettt et a et st e s et e e e st e s e s ae e b e s ae et eas et e e s et e e e enneennenaeennenaee 14
221 Datd ValIdatiONooieiiiieiiiieie ettt ettt et st st st ae st sttt et n e na e e nae 15
222 B-BYE INIEOT ettt et e ettt et e a e sa e naee 16
223 @D SECONAS ...cueeeuiiiieiiriieie ettt ettt ettt et sttt st st st n et a e e saeennenae 17

3 Understanding the Application INterfaceccccocvvuneeccccscvnnnecccssssnnnscccssssennees 19

3.1 ArUMENES PASSING ..cveiniiiiiiiiiiiiei ettt et et ettt et e sa e e 19
3.2 Multi-DIimensional ATTAYS......cccoieiiirieriiiienitetee ettt ettt ettt ettt ettt e sae e s bt e esae s e sae et e eaeeneeanesaeennenaee 22
3.3 Data Type EQUIVAIBIEcccoooiiiiiiiiiiiieit ettt ettt ettt e sbe e st eneeanesaeennenaee 22
34 FIXEd STAEIMENT c..eoutiiiiiiieiiiiiet ittt ettt ettt ettt et eae e et et e st e e e sae e s e s bt esnesbeeaneeaeenneeaeeneeanenaeennenaee 22
3.5 EXCeption HANAINgcc.ooiiiiiiiiiiiiiie ettt et st e s ettt e 23
3.6 Dimensional LIMITAtiONScccooiieiiiiiiiiiiiieneiieieeiee ettt et ettt et e st et e e eneennesaeennenaee 23

4 Application INLErfaceccceeevcnricicsnnicnssnnecsssnsrcsssssecssssssessssssscssssssssssssssssnssscs 23

4.1 Library INFOIMAtION ...c..cocuieiiiiiiiiiiiieieit ettt ettt sttt ettt et a e et e bt saeesaeeane s bt eanesbeeanesseennesaeensene 26
4.1.1 CDFZetDAtaTYPESIZE ...cuveveeniieiieiieieeieetereetese ettt ettt ettt e e st e et et esaeeaee s ae e s e s bt eanesbeesnesseesnesueennene 26
412 CDFgetLibraryCOopyTightcccooiiiiiiiiiiieieiteteseeteee ettt ettt sttt ettt e st e beene st aesueesneeae 27
4.1.3 CDFZEtLIDIary VErSIONccccouieiiriiiieiietenieetesie ettt ettt et ettt ettt esaeeaeesaeeanesaeesne s it eanenseennesteennesueennene 27
414 CDFZESTAUSTEXEoiiiiiiiiiiiieiett ettt ettt ettt ettt et st a e et e s bt eane s bt e ane s bt eanesseesnesteenneeueennene 28

A2 CDF et h e bttt ettt e ae e et et a e e aeesa e e ane bt e s e s bt ene e bt eanesteeneene 29

421 CDFCLOSEtteiieeiitesite ettt ettt ettt ettt et ht e st esat e st e e s abeeat e e sht e e bt e be e e abeesatesa bt e shbe e beesbbeebeenbteebeesaeeeate 29
422 CDECIOSECDE ..ottt ettt et ettt st a e et ae e s aeeane s bt eane bt ennesaeeneeueenneeae 30
423 CDFCIALEeeeeeuiieiieeieeette ettt ettt ettt et e s bt s bt e s at e st e e s ateeabeeshteea bt e beesabeesatesabeesabeeabeesbbeenbeenbeeenbeesneenane 31
424 CDECIEAECDIFccuiiiiiiiiiei ettt ettt ettt st et s et e s bt e ane st eane bt eanesteesnesueennene 32
425 CDEFAEIELE ...ttt ettt sttt st et ettt ettt st e et et ae e s aeean e h e e h e aneeteeneeueenneeae 33
4.2.6 CDFAEIGtECDIEFoiiiiiiiiieiieeet ettt ettt et ettt st a e et ae e e s bt e s s bt eane bt eanesaeesnesueennene 34
A2T CDEFAOC ... ittt ettt ettt sttt ettt ettt et eae et sat e et et aeeane s heean e s he s e bt eenesteeneeueenneeae 35
A28 CDFEITOTutiiiieeiiteeite ettt ettt ettt et e s et e s ht e e bt e s at e st e e s abeeabeeshteeabe e be e e abeesatesabeesabeeabeesbteenbeenbeesnbeesneenate 36
429 CDFZEtCACRESIZE......ccueeiieiieiiieeeit ettt ettt ettt sttt et st e st e s bt eane bt e s e steesneeueenneeae 37
4210 CDFZEtCRECKSUIMc..eiuiiiieitieiietietete ettt ettt sttt ettt et e st seee bt et e s aeeanesae e s e saeeanesseeanesteenneeueennene 37
4211 CDFZEtCOMPIESSIONeiveeurieueeiieiteteetenteetesieetesteenesteeasesteesseeseesseseeesseeaeesaeennesaeessesseessenseensenseennenseensenne 38
4212 CDFgetCompressionCaChESIZecc.cocuiriiiiiirieiiniieieneetietett et ettt ettt sae e eae 39
4213 CDFgetCompresSionIn o.........cccoiiiiiiiiiiiiiiiiieieneeese ettt ettt et esn e 40
4214 CDFZECOPYIIZNT ..ottt ettt ettt st a e et s bt e st e e s bt eanesbeennesteesnesueennene 41
4215 CDFZEDECOMINEGcveeuiiiieitieiieiietertt ettt sttt et sttt ettt et et st e st eaeesaeeaeesaeesnesaeesnesseennesteenneeueennene 42
4216 CDFZEENCOUINGooueiuiiiiiiieiiiit ettt ettt sttt et ettt st ae e s bt eane s ae e s e s aeesne b e ennesteenneeueennene 42
4217 CDFEEtFIeBaCKWAIc.cooiiiiiiiiiiiieicneeeteece ettt ettt et e st e sae e saeesneeae 43
4218 CDFZEEOIMALeoutiiiiiiieiieti ettt ettt ettt sttt ettt ettt st e st et e s st eanesae e s e s bt essesseennesueenneeueennenne 44
4219 CDFgetLeapSecondLastUpdatedcoeecieiieriinieiiniieiinietieeete et et ene e eneeae 45
4220 CDFZEMAJOTILY ..eouviruieiieiietieieenieeterteete sttt sie ettt e e st ettt et e st et e seee st eaeesaeemnesaeesnesaeensenseennesteenneeueennene 46
4221 CDFZENAME ..ottt ettt ettt st ettt ettt ettt et e st et sat e st eaeesaeeane s st eanesaeessesseennesteenneeueennene 46
4222 CDFgetNegtoPOSIPOMOUEcoouiiiiniiiiiiieienieiesitetene ettt ettt ettt e s s s b e s e saeenesueenneeae 47
4223 CDFgetReadOnlyMOdec..oocviuiiiiniiiieiieienieeiesieeteee ettt ettt sttt ettt e b e nesaeeaesaeenneeae 48
4224 CDFEetStagelacCheSiZecccuiviiriiiiiiieieieeiereeteee ettt ettt sttt et st st s e ease b esnesaeenesaeenneeae 49
4225 CDFZEtVALIAALEooueeiiiiiiiieieeiteteeete ettt ettt ettt st a e e s et eane s ae e s e s bt esne bt ennestee s e sueennene 50
4226 CDEFZEEVETSIONcutiuiiuiieieeiieitett ettt ettt sttt et s ettt et e st et sate st eaeesaeeanesaeemnesseeanenseeanesteennesueensenne 50
4227 CDFZEIZIMOUEcouviiieiiieiieiietett ettt sttt sttt ettt ettt st a e et s et eaee s ae e s e s bt eane st ennesaeennesueennene 51
4228 CDFINQUITE ...cuveiieiiiiieiieieete ettt ettt et s et sttt ettt e a e e st et sat e st eatesaeeane s st eanenaeeasenseennenteennesueennenne 52
4220 CDFINQUITECDEooiiiiiiiiiiiiit ettt ettt st a e et e st e ne s bt esne bt enesaeesneeueenneene 53
4230 CDFOPEI....c..iiiiiieiiieiteit ettt ettt ettt ettt sttt ettt et et et e ae et s et e et eaeesaeeane s ae e s e s bt eane bt eaneeteeneeueenneeae 55
4231 CDFOPENCDE ..ottt sttt ettt et ettt st a e et sae e e s bt e s e s aeeane bt ennesaeesneeueennene 56
4232 CDEFSCIECL ..ottt ettt ettt et e st s bt e s a bt et e s bt e e bt e bt e e bt e bt e e bt e sab e e bt e shbeebeenbee e beesaeeeate 57
4.2.33 CDFSEIECICDFoiiiiiiiiiiiieeet ettt ettt et ettt st a e et sae e s s ae e e bt eanesbeesnesueennene 58
4234 CDFSECACRESIZEc..eeuiiiieiiieiieit ettt st et e st eane bt esae e esaeenneeae 59
4.2.35 CDFSEICRECKSUILcuueiuiiiieiiieiteit ettt ettt ettt ettt et st a e et e s st eanesae e s e s aeeanesbeeanesteenneeueennene 60
4236 CDFSETCOMPIESSIONeiueeutieieeiteitenteeterte et st ete st ese s it ees e e st esseeseesseseeesaesanesaeennesaeeanenseensenseennenseennesueensene 60
4237 CDFsetCompressionCAChESIZEcoueeiiriiiiinieieniieienieeteet ettt ettt ettt e ene s esneeae 61
4.2.38 CDFSEIDECOMINGooueeuiiiieiiieiieitetentt ettt sttt ettt ettt et et st e st et e saeeanesaeesnesaeeanesseennesteennesueennene 62
4239 CDFSEENCOGING......ccueiiiiiiiiieiiiit ettt ettt ettt ettt st a e et s st eane s ae e s e s bt eanesbeeanesteesnesueennene 63
4240 CDFSEFIEBACKWATGeiitiiiiiiiiiiiieeteesite ettt ettt ettt et ettt bt esatesabeesabe s bt e sbee e bt esbaesbeesaeesane 64
4241 CDFSEFOIMALeiitiiiiiiiitteitete ettt ettt et s e et e st e eabe e s bt e e bt e s bee s bt esatesabeesabeeabeesbbeebeenbeesnbeesaeenane 64
4242 CDFsetLeapSecondLastUpdated...........cccoeeviirieiiinieiiiniieiinieiieeeie ettt s ene e 65
4243 CDFSEIMAJOTILYc.eerueeuiieiietieiiettetente et sttt sttt st eae st et ste et e st et saee st eaee s st emnesaeemnesueeasenseennesteennenueennenne 66
4244 CDFsetNegtoOPOSIPOMOUE.........cciiciiriiiiiiieienieeieeiteteee ettt ettt et et ettt et be e saeenesueesneeae 67
4245 CDFsetReadOnlIyMOGEc..cocuiruiiiiniiiiiniieieneeiesitetese ettt ettt st sae et sae e sae e st eene b eanesaeesnesueenneene 68
4246 CDFsetStagelacCheSizZecc.oocuiruiiiiniiiiiiieierceeeeeee ettt ettt sttt ettt e b e saeeaesaeenneeae 68
A2AT CDFSEEVAIIAALE ..ccuviiuiiiiiiiiieiie ettt ettt ettt et e st e et e st e eate e s bt e eabeesbee e bt esaeesabeesbbeeabeesbbeenbeenseesnbeesaeenane 69
4248 CDFSEIZIMOMEccueiiieiieiieiieitett ettt ettt sttt ettt et ettt st a e e saeeane s bt e s e s st eane s e ennesteesnesueennene 70
4.3 VATIADIES ettt ettt et et ettt e h e et b e e et e e b ettt e bt st e e bt e ea bt e e bt e e bt e be e e abeeshee e beesabesaneens 71
431 CDFCIOSEIVAT ...eutiiiiiiieiiite ettt ettt ettt et s et e b e sttt st e s at e eab e e s bt e e bt e bt e e bt e satesabeesabeeabeesbbeenbeenbeesnbeesneenane 71
432 CDFCIOSEZVALuiiiiiiiiiiiie ettt ettt ettt et ettt et e sttt st e s at e et e s bt e e bt e bt e e b e e satesabeesabeeabeesbbeenbeenbtesnbeesaeenane 72
433 CDFconfirmrVarEXISIENCEcccouiiiiriiiiiiniieienteiesiteteee ettt ettt sae et e e st eanesbeenesaeenesneesneeae 73
43.4 CDFconfirmrVarPadValUEEXIStENCEcoueeviiriiiriiniiiiiniieiieieit ettt et 73
435 CDFconfirmzZVarEXIStENCEccccouiriiriiiiiiniieieneetesitetesie ettt ettt sttt et sae e e e s e st esne s e eenesaeesnesueenneeae 74
43.6 CDFconfirmzVarPadValUEEXIStBICEcoueeuirieiiriieiiniieiieiieit ettt et e ne e 75
437 CDFCIEAETI VAL ...eeiiiiiiiieiieeiteeite ettt ettt et ettt bt e st st esateeabeesht e e bt e bt e sabeesaeesabeesabeeabeesbbeebeenbeesnbeesaeenane 76

438

439

43.10
43.11
43.12
43.13
43.14
43.15
43.16
4317
43.18
43.19
43.20
4321
4322
4323
4324
4325
43.26
4327
4328
43.29
4.3.30
4331
4332
4333
4334
4335
4.3.36
4337
4338
4.3.39
4.3.40
4341
4342
4343
4.3.44
4.3.45
4.3.46
4347
4348
4.3.49
4.3.50
4351
4352
4353
4354
4355
4.3.56
4357
43.58
4.3.59
4.3.60
43.61
43.62
43.63

CDEFCIEABZVAL ..ottt ettt ettt ettt et a e et h e s e s b et e b e eas e st easesatesaesaeenaesaeennesanennens 78
CDEFAEIEIEI VAT ..ottt ettt et ettt s e et e e bt eas e bt esnesaeenaesaeennesanennens 79
CDFdeleterVArRECOTASc..oouieiiriiiiiriieii ettt ettt et sttt sae s sae s e saeenneene 80
CDFdeleterVarRecOrdSRENUMDETccuiiieiiiiiiniiiieiieieieeeee ettt ene 81
CDFAEIEIEZVALc..eeuiiiieiiieiieiieeetee ettt ettt ettt ettt et st st e bt sane s bt e s e bt eesesaeeanesneenneane 82
CDFAEleteZVarRECOIASc..ooouiiiiiiiiiieiieie ettt sttt et sae e enesneenneene 83
CDFdeletezVarRecordSRENUMDETcc.coieiiiiiiiiiiiiiieieiecececc et 84
CDFgetMaxWITHENRECINUINSoouiiiiiiiiiiiieiiiieteetete ettt ettt st et e e eene s eanesseenneene 85
CDFZENUMIVALS.....c.oiiitiiieiietieitettet ettt sttt et sttt ettt ees et e e s e sbe et e saeessesaee st sanesseeanenseeasesseensesseensene 86
CDFZENUMZVALS ...eveiieiiieiietietetteteett et sttt et sttt ees et eas et e s e s st estesaeessesaee st sanesseeanesseeesesseensesneensene 87
CDFgetrVarAIIOCRECOITSc..oeviiiiiiiiieii ittt et sttt et e ene b enneene 88
CDFgetrVarBIoCKINGFACLOTcciiiiiiiiiiiieiciieecteecee ettt ettt st eee 88
CDFZetrVarCacCheSiZecooouieiiriiiiiiieii ittt ettt st et saeenesaeesneene 89
CDFZetrVarCOmMPIESSIONcuieuriruieiintieteniteteritesteetteteeesesteeesesteessesseesaesaeessesaeessesanesaeeanesseensenseensesseenneane 90
CDFZEIVArData.....ccueiiiiiiieiiiiieiie ettt ettt ettt et st st a e sanesaeeanesbeeesesaeenneeneenneene 91
CDFZEtrVarDataTYPecccueeuieiiriieiiniieie sttt ettt ettt et st eae st resanesaesane e eenesaeennesneenneene 92
CDFgetrVarDIMVAITANCEScocveeuieiirieiiiieieiieeieetete ettt et ste st esae st essesaeesaesanesneeanesbeeenesseennesseenneane 93
CDFZEIVArINTO ..c..couiiiiiiiiieieee ettt sttt st et eneeaeenneene 94
CDFgetrVarMax AIIOCRECNUIcocuiiiiiiiieiiiteeetee ettt ettt st sne st enesaeenneene 95
CDFgetrVarMax WItteNRECINUIcoiiiiiiiiiiieiiiieeeietet ettt st ene s ene 96
CDFZEIVATNAITIC........eouiiiieiieiieieitete ettt sttt ettt ettt et e e s bt et saee s e saee st eanesaesanesbeeenesseenneeseennene 97
CDFgetr VarNUMEICMENLScocviiuiiiiiieiiiieieieeieetee ettt ettt e st saesne e eenesaeeaneeneenneene 98
CDFgetrVarNUMRECSWIIIIEIcouiiiiiiieiiiieiciieie ettt ettt et enesneenneene 99
CDFZetrVarPadValUe..........c.oouioiiiiiiiiieii ittt st e 99
CDFgetrVarReCOTADALaAc.oeuiiiiriiiieieiteteteeeseee ettt ettt et sttt e s sae s 100
CDFZetrVarRECVATIANCEcc.oeuiiiiiiiiiieiiiiieieniecte ettt ettt ettt et ae st sae e sae e saeeanesaees 101
CDFgetrVarReSeIVEPEICENLcc.iviiiiiiiiieicieierceee sttt et e 102
CDFZEtrVarsDIMSIZEScouveuiriiiiieiieiieiett ettt sttt ettt ettt ettt e ae et saeeaeesaeennesaeennenaees 103
CDFZEtrVarSEqDALac..coeeiieiiiiieieiieeee ettt sttt ettt ettt ae st saeeanesaeesnesaeennenaeen 104
CDFZEIVArSEAPOSc..eouiiiiiiiiieieee ettt ettt ettt et ae st sae e sae e sae e saees 105
CDFgetrVarsMax WritteNRECNUINL......c.ooiiiiiiiiiiiiiiceierecene ettt et e 106
CDFZetrVarsINUMDIIMISc.coouiiiiiiiieiieiee ettt ettt et e b e e sae e st e saeennenaeen 107
CDFgetrVarSpars€RECOTASoouiiiiriiiiiiieieieeneee ettt ettt et e 107
CDFZEtVAIINUIN ...ttt et ettt ettt ettt eae e ne et e st eanesaeennesaeennennees 108
CDFgetzZVarAllOCRECOTASoouiiiiiiiiiieiieiteiert ettt ettt et et 109
CDFgetzVarBloCKINGFACIOTccuiiiiiiiiiiieiciccercee ettt et 110
CDFZEtZVarCaCheSizZecc.eeuiiuiiiiiiiiieiee ettt ettt et et sae e st sre e saeen 111
CDFZEtZV arCOmMPIESSION.....ccuviuietieieetieiteteetenteeere st ete st enesueessesteessesseesseeueesseeseesseennesaeensenseennenaeennennens 112
CDFZEIZVATDALA ...ceeeiieiiiiieieeiietteeete ettt sttt ettt et ettt eae e ae et e st eanesaeennesaeennenuees 113
CDFZEtZVarDataTYPeoouveiiiiiiiieiieiietett ettt sttt ettt ettt et et et ae st sae e e saeennenaeennenaeen 114
CDFZEtZVArDIMSIZESeveouiiiiiieiieiietietett ettt sttt ettt ettt ettt e ne st saeeaeesaeennesaeennenaeen 115
CDFgetzZVarDIMVATTIANCES.......cc.eeouiiieiieieiieienitere ettt ettt ettt et et esaeeeeesaeennesaeennenaeennenaees 116
CDFZEtZVATINTO ...ttt ettt ettt et sa e e e sae s saeenenae s 117
CDFgetzVarMax AIIOCRECNUIcoiiiiiiiiiiieitcicrieeee ettt ettt et 118
CDFgetzVarMaxWItteNRECINUINLcocuiriiriiiiiiiiecriceicrectest ettt et 119
CDFZEIZVATNAINEcoeeiiiiiiiiiiieiieieett ettt ettt sttt et e bt e s e bt eae et e eaeeneeeee st eanesaeemnenaeennenueen 120
CDFZetzZVarNUMDIIISoc.iiiiiiiiiiiieiieiec ettt ettt et a e et sae e bt enesaeennenaeen 120
CDFgetzZVarNUMEIBIENEScc.eeoiiiiiiieieiieiee ettt ettt et sa e s e saeeanenaeen 121
CDFgetzZVarNUMRECSWIIHEIc..eeuiiiieiiiiieieiteesteete sttt ettt ettt et et sae e s e eane e 122
CDFZetzZVarPadValUecccooiiiiiiiiiiiiceceree ettt st et 123
CDFgetzZVarReCOrdData........c.oeuieiiriiiieiiiieieiteerteee ettt ettt et et sae e s e s 124
CDFZEtZVarRECVATTANCEcouviiiiiieiiiiieiieie ettt ettt ettt ettt et sae e sae e saeenesaeennenaeen 125
CDFZetZVarReSEIVEPEICENTc..ceuiiiiiiieiieiieteniteeere ettt ettt ettt ettt ettt e ae et sae e s st e e e saeeanesaees 126
CDFZEtZVarSEqDALAccuveiiiiiiiieiieieeieetee ettt sttt ettt ettt et ae st sae e e s bt ennesaeeanenaeen 127
CDFZEtZVArSEAPOS ...ttt sttt ettt ettt et et sa e e e ae e sae e naees 128

CDFgetzVarsMaxWrittenNRECINUINc.ooiiiiiiiiiiiiiiiiiceienceeneeeeieeeee ettt s 128

4.3.64 CDFgetzVarSparsERECOTASco.eeiiriiiiiiieieeieieeeete ettt sttt et e sae e sae e e 129

4.3.65 CDFhyperGetrVAarData.c.ccoceoieiiiriiiiiiieieeiieieeeete ettt ettt st et e an et eanesaeesnesneennesae 130
4.3.66 CDFhyperGetZVarDataccccocieiiiiiiiiiiieiiiieieeecte ettt ettt sttt e sae e s 132
4.3.67 CDFhyperPutrVarDatac..cocceoieiiiiiiiiiiieienieieeeete ettt ettt sttt e saeesnesneennesae 134
4.3.68 CDFhyperPutzZVarData..........cccccoieviiriiiiiiiiieeieieee ettt ettt sttt sae e sneesnesae 135
4.3.60 CDFINQUITEIVALc..iiiiiieiiiiieieitete ettt ettt ettt et e et e b st e b s e e b ees e bt e s e st easesneeaneeneennesaee 137
43770 CDFINQUITEZVAL ..cuvioiiiiieiiiiieieitetert ettt ettt ettt ettt esa e st eae st e s e san e b e ees et e ean e st essesseesneeneennenaee 139
4371 CDFPUIIVAIDALAooueiiiiiiiieiiiieicnecect ettt st st st e et saeeanesneennenae 140
4372 CDFpUrVarPadValUec..ccccooiiiiiiiiiiiiiiieeieieece ettt sttt et e 141
4373 CDFputrVarReCOrdDataccccoieiiiiiiiiieieeieieee ettt ettt sttt et e sae e s 142
43774 CDFPUIVArSEeqDataccccouiiiiiieiiiiiieieeeetete ettt ettt sttt ettt et e sbe e e saeennesae 143
4375 CDFPUIZVAIDALAoeeiiieiiiiieiiiteereee ettt st st s ettt saeean e s nae 144
43776 CDFPUZVArPadValUecoccooiiiiiiiiiiiiiiiicieeecec ettt e 146
4377 CDFpUZVarReCOrdDAtaAcccoooieiiiiiiiiieieiieieeece ettt sttt sttt e sae e s e 147
43778 CDFPUIZVAISEADALAooueiiieiiiiieieiicieeieeetee ettt ettt ettt st sttt e sbe e e saeennesae 148
43779 CDFIENAMET VAL .ueiiiuiiiiiiiiieiite ettt et stt et e bt e st e bt e st e e satesa bt e s bt e eabe e beesabeebtesabeenstesabeenbaesaseebaesaseebeens 149
4.3.80 CDFIENAMEZ VATeiiiiiitiiiiieite ettt et ettt et ettt et et e st esate st e e sbteeab e e beesabe e beesabeenstesateenbaesaseenbaesnseeseens 150
43.81 CDFsetrVarAlloOCBIOCKRECOTASc.ueriiiiiiiiiiiiiiieieeite ettt ettt st ettt et st e beesareenee s 150
4.3.82 CDFSetrVarAllOCRECOTAScccuuiiiiiiiiiiieiiieeie ettt et ettt et st e b e st e bt e sabeebeesabeebee s 151
43.83 CDFsetrVarBIoCKINGFACIOTc..cociiiiiiiiiieiieiieeceee ettt et e 152
4.3.84 CDFSetrVarCacheSiZecooueeruiiiiiiiieeieeciteee ettt ettt ettt e b e st e bt e st e s bt e sat e e bt e sateebeesabeebee s 153
4.3.85 CDFSetrVarCOMPIESSIONcccueruieriiruierieriiereniteteeieeteeeeesteessesaeessesatessesueessesasessesssensessneseessesseessesseensennes 154
4.3.86 CDFSErVarDataSPECcceeouieiiruieieniieieniteteeitete ettt ettt ettt st eae st e b s e be e s et e s e bt eanesaeesnesneennesaee 155
4.3.87 CDFSetrVarDIMVATIANCES ...ccc.eertiiriieiiieniieeieeitteeieesite st esitesteesiteeabeesbeesabeesbeesateesstesateesbaesaseebaesnsessseess 156
4.3.88 CDFSetrVarINitialRECScocueeruiiiiiiiieiiieiiieeieette ettt ettt ettt sttt e st e bae st e e beesabeebee s 157
4.3.89 CDFSetrVArRECVATIANCEeevueiiuiiiiiiiiieriie ettt ettt sttt ettt e sb e st e bt st e s bt e sat e e sbaesateebeesabeebee s 158
4390 CDFSetrVarReSEIVEPETICENLcc.iiiiiiiiiiiiiieeiie ettt ettt sttt sttt e st e bt e st e e beesabeebee s 158
4391 CDFSetrVarsCaChESIZec.cueerueiriiiiieiiteiiieeteett ettt sttt ettt e bt e bt e bt e bt e sabeesbtesateesbaesabeebeesaseebeens 159
4.3.92 CDFSEVarSEQPOScouiiiiiieiiiteeree ettt ettt st ettt e aeean e st 160
4.3.93 CDFsetrVarSpars€RECOIAScoieiiiiiiiiieiecieiee ettt st sttt e sae e s e 161
4394 CDFsetzZVarAlloOCBIOCKRECOTAS.c..uiiiiiiiiiiiiiiieeieeite ettt sttt et st nbe e st e b s 162
4.3.95 CDFSetZVarAllOCRECOTAScccueiruiiiiiiiiieiiiieieeite ettt ettt ettt ettt st e s bt e st esbaesateebaesabeebee s 163
4396 CDFsetzVarBlOCKINGFACIOTc..coouiiiiiiiiiiiieieiicecie ettt e 164
4.3.97 CDFSEtZVArCaCheSiZecoovieiiiiiiiiieeieecite ettt ettt et ettt e bt st e s bt e sat e e sbeesabeebaesabeebee s 165
4.3.98 CDFSEtZVarCOmPIESSION «.....ceveruiereriiereniieteeiteteeteeteeaeesteestesaeessesatessesueessesanesesesentesaneseessenseensesneensennee 165
4.3.99 CDFSEtZVarDataSPECcueeouieiiriieieiieienitetesitet ettt ettt ettt et st eae st besasesbe s s et e s et essesaeeanesneennenae 166
4.3.100 CDFSetZVarDIMVArIQNCEScceveeruterieeriieeiteeniteeieenttesteesitesteestteeteesbeesbeesbeesateesstesateessaesaseesbeessessseens 167
4.3.101 CDFSetZVarInitialRECSueeruiiiiiiriieiieeiiieeie ettt ettt ettt st e bt st esete st e e beesabeebeesabeebee s 168
4.3.102 CDFSetZVArRECVAIIANCEc..ceruviiriiiiiiiniiieieeite ettt ettt et ettt ettt e sate st e e sbaesabeebaesabeebee s 169
4.3.103 CDFSetzZVarReSErVEPEICENLcc..eiiuiiiiiiiiiiiieeite ettt ettt ettt st ettt e e st e e beesabeebee s 170
4.3.104 CDFSetZVarsCaCheSiZecovuuiiiiiiiieiieiiieeieete ettt ettt sttt st e s bt e st e e baesabeebeesabeebee s 171
4.3.105 CDFSEtZVAISEUPOS ..ottt ettt st st ettt et ea et 172
4.3.106 CDFSetzVarSparseRECOTASccccriiiiiiiiiiiiiiiei ettt 173
43107 CDEFVAICIOSE «...eeuvtieiieiiiteieesite ettt ettt et ettt et sbt e st e s bt e st e e s bt e eab e e beesabeenbeesabeesstesabeenbaesaseebaesabeebeens 174
4.3.108 CDEFVAICTALE ...couvveeueeeiiieieesite ettt et ettt et ettt et e bt e st e e satesateesbaeeabe e beesabeebeesabeebtesateenbaesaseebaesabeebeess 174
4.3.109 CDEFVAIGEL ..coutiiiieeiiieitit ettt et ettt et ettt et e bt e st e e s bt e s at e e sbteeab e e beesabeenbeesabeestesateebtesaseenbeesabeebeens 176
43110 CDEVATHYPETIGELoovieiiiiieiiiiieieeieeteet ettt ettt ettt e e st b e s e b s et e s e bt esnesbeenneeneennenaee 177
43111 CDEVAHYPETIPULcoiiiiiiiiiiieeeeeece ettt ettt ettt e sbe e s 178
43112 CDEFVAIINQUITE.....c.vioiiiiieieiceteetete ettt ettt ettt et et e e st e e s ane b e et ean et easesaeesnesneennesaie 180
43113 CDEFVAINUITL cetiiiieeieeite ettt ettt et ettt et e bt e sat e e satesateesbaeeabe e beeeabeenbeesabeenstesateenbaesaseenbaesaseebeess 181
43114 CDEFVAIPUL ..ottt ettt ettt st et e st e s bt e e ab e e bt e s b e e bt e sabe e b tesateenbaesaseebeesaseebeenn 182
43115 CDEFVATRENAMEcouviiiiiiiieiieiieeteete ettt ettt ettt s e st e sbt e e bt e bt e s bt e bt e sabeesstesabeebaesabeebeesaseebeens 183
44 AUTIDULES/ENITICS .uvteeutieiieetee sttt ettt ettt ettt e bt e sat e e bt e s ate e bt e eabeeabeesat e e bt e sateeabeessbeeabeesabeenbeesaseesaenaees 184
44T CDFAUICTEALE...c..veetreeeeetteeteestte et stt e et e stt e et e ettt ebeesbeesateesutesateenbteeabe e beesabeenbeesateenstesateenbaesaseenbaesaseeseens 184
442 CDFattrENtryINQUITE......ccueociiriieiiiieieiieteet ettt ettt ettt e st st sttt easesneesnesneennenae 185

N N O3 B) S i ¢ € L= PR 187

444

445

44.6

447

448

449

4410
4411
4412
4413
4414
4.4.15
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4.4.39
4.4.40
4441
4.4.42
4.4.43
4.4.44
4.4.45
4.4.46
4.4.47
4448
4.4.49

CDFAIINQUITE ..c..eevieiiiiieieitete ettt ettt ettt ettt et s ae e et st ese st e b e sas e bt eas e b e eeneebeensesseenneeneennenae 188
CDFAINUIN c..couiiieiteeett ettt ettt ettt et e a e ae e sa e sa e s et esse st e b e sase s e eane b eesn e beensesteennesneennenaee 190
CDFAIPUL ..ottt ettt ettt et st st st e b e s s e bt e s e beean e beesnesaeenneeaeesnenae 190
CDFAIRENAIMEcuiiiiiieiieitee ettt ettt ettt et st st st e b e s ae b eas e b e ees e bt essesbeenneeneesnenae 192
CDFcOnfirMAUIEXISTEICEc..coviiiieiiiiieiiee ettt sttt st sbe e s ne e 193
CDFconfirmgENtryEXISTENCEcc.cevuiiieiiiieiieiietieiete ettt sttt ettt st e sbe e s ene e 194
CDFconfirmrENryEXIStENCEc...ocvieiiiiiiieiieierteeseeie sttt ettt et st e 194
CDFconfirmzENtryEXISIEICE «.....cocvieiiiieiiiiieieniteienieere ettt ettt ettt et et sae e sae e e saeennenaees 195
CDFCIEATEALLT ..ottt ettt ettt ettt et et e st e e s a e e s bt e b e e s et e eaeesa e eaeeaeseeeaeeanesaeennenaeennennees 196
CDFAEIETEALLT ..ottt ettt sttt e sttt et st e bt eae e st e st eaeeeee st ennesaeennenaeennennees 197
CDFAElEte AIZENLIY ..ottt sttt ettt e e bt st sae e sae e e e saeeanenaeen 198
CDFAEIEtEAITENLIYeouiiiiiiiiiieiieeee ettt ettt et s sa e e e ae e s e saeen 199
CDFAEIEtEAIZENIIY ..c..eeiiiieiiiiieiietete ettt sttt sttt ettt et ea e et saeeanesaeennesaeennenaeen 200
CDFZEIAUMIZENIIY ..cueiiiiiiiiiiieeiee ettt et ettt et ettt eae e ae e e saeeanesaeeanesaeennenaeen 201
CDFgetAttrgENtryDataTyPecc.eeovieiiiieiiiieieriteterieete ettt ettt et sae e sae e s enesaeene e 202
CDFgetAttrgEntryNUMELEMENLScooiiiiiiiiiiiiiiciceiereeene ettt ettt et e 203
CDFZetAUIMAXZENIIY ..ceoiiiiiiiiiiieiet ettt et ettt et a e s sae e sae e saeeanesaeen 204
CDFZEtAUIMAXIENLIY ..ottt sttt ettt et ae e sa e e e s b e sae e saeen 205
CDFZEetAUIMAXZENTIY ...ouiiiiiiiiiiiiiieicete ettt ettt e ne et sae e sae e sae e saeen 206
CDFZETAMIINGAINE ...cuveiieiiiiieiieiieteee ettt ettt et e e st e s e s ae e s e s bt e e e b e et e eaeess e eseessesane st ennesaeennenaeennennees 207
CDFZETAMIINUII ...c..eoutiiieiiieiieteeit ettt ettt ettt ettt et s et e bt e e s et e eae et e eae e st saee st ennesaeennesaeennennees 208
CDFZEIAMITENIIY c..cutiiiiiiieiieieee ettt sttt et et ettt e ae et esaeeaeesaeennesaeennesuees 209
CDFgetAtITENIYDAtATYPE ..ottt ettt et et sae e s e 210
CDFgetAttrrEntryNUMEICIENTScc.eoiiiiiiiiiiiiiicriccieecene ettt et e 211
CDFZETAMISCOPE «..cvveniieiriiieiteeie ettt ettt ettt ettt et st e s e e s bt e b e s e et e eae et e eae e st seee st ennenaeennenaeennenneen 212
CDFZELAMIZENITY ..eouiiiiiiiiiiiiiieietteet ettt sttt ettt et ettt eae e ae e e saeeanesaeennesaeennenaeen 213
CDFgetAtIZENtryDataTyPecouveiiiiiiieiieiieeertee ettt ettt et et sae e e e sae s 214
CDFgetAttrzEntry NUMEISINENTScocuiiiiiiiiiiiiiiiiceieneeene ettt et 215
CDFZetNUMAUIZENIIIES ...c..eeuiiiieiieietetet ettt ettt et sa e e sae e e s e saeen 216
CDFZEtNUMATIIDULESoeiiiiiieiieiieiietieiett ettt ettt sttt et n e e e st e e ae et e st eanesaeennesaeennenaeen 217
CDFZEetNUMAUITENIIIES ...c..eouiiiiiiiieiieiieiet ettt ettt et sae e sae e sae e saees 218
CDFZEtNUMAMIZENIIIES ...c..eoutiiieiieiieiieiet ettt ettt ettt e ae e sae e sae e saeeanenaeen 219
CDFZEtNUMZAITDULESeeeeiiiiieiieieetieiete ettt sttt ettt ettt et s et e et e s e aeseeesaeeanesaeennenaeennenneen 219
CDFZEtNUMVAIIDULESoveeiiiiieiieiietieiett ettt ettt sttt et a e e st e e aeeeee st eanesaeennesaeennenneen 220
CDFINQUITE AT ...ttt ettt ettt et e e st s bt et e et e e e b e et e eae et e eaeesaeeaee st ennesaeennesaeennenuees 221
CDFINQUITEATIZENITY c..coeiiiiiiiiieiiee ettt ettt ettt ettt e a e et sa e e e saeenesaeeanenaeen 223
CDFINQUITEATIITENITY ..eoiiiiiiiiiiiieiieeeee ettt ettt ettt et st sae e bt e sae e sneen 224
CDFINQUITEATIZENITY «..ceviiiiiiiiieiieicteetee ettt ettt ettt ettt et ae st sae et e sae e e e saeeanenneen 225
CDFPULATIZENLTY ..ottt sttt ettt et ea e st sa e eanesaeennesaeennenaees 226
CDFPULATITENLIY ..ottt ettt et et sa e e sae e s enenneen 228
CDFPULATIZENIIY ..cvtiiiiiiiiiieiieeeee ettt ettt ettt ettt e ae e esa e eane st eanesaeennenaeen 229
CDFTENAMEALLT «..c.eiitiiieiieeiteteee ettt ettt ettt e s e e st e e s bt e s e s bt ea b e e s e et e eae et e esee st eaee st ennesaeemnesaeennenneen 230
CDFSetAtIgENIYDAtASPECoueeiiiiiiiieiieiiceere ettt ettt et et sae e s e s 231
CDFSetAUITENIYDATASPEC ..ottt sttt ettt et ae st sae e s ae e sae e sae s 232
CDFSELAISCOPEevveniieiteieeie ettt ettt ettt ettt e st e st e ae s he e e e bt et e et e et e eae et e eaeesateaee st ennesaeennenaeennennees 233
CDFSEtAUIZENIYDAtASPEC ..ottt sttt ettt ettt et et st sae e st e sae e 234

S Interpreting CDF Status Codescuiiiccensrsneecccsssssannsccssssssnsssssssssssssssssssssss 239

6 EPOCH Utility ROULINES ...cuvveeeicccsssssnneeccssssssnsseccssssssnsssssssssssssssssssssssassssssssssass 230

6.1 COMPUIEBEPOCH ..ottt ettt sttt et ettt et eae et e st eaesanesaeeanenaeennenuees 236
6.2 EPOCHDIEAKAOWuvviiiiieiiiiiee ettt eee ittt e e eeeta e e e e eettaeeeeeeetaeeeeeeeeaasseeeeeeasssseeeeeeessseaessenssseeeeenanrees 237
6.3 ENCOAEEPOCHt e ettt e et et e e e e e e etae e e e e e e taaeeeeeesaassaeeeeeetaseeeseensnareeeeennnrees 237
6.4 €NCOAEEPOCHL ... e ettt e et et e e e e eetae e e e e e e tasaeeeeeeaaseeeeeeeetaseeeseensssseeeeennnrees 237

(IS 1 TeTe e (] 21 50 1 @3 5 /RN 237

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26

ENCOACEPOCHS ... et e e ettt e e e e e e taa e e e e eeetaseeeeeesttaaeeeeeetsaeeeeeenatsseeesennanreeeeeanns 238
ENCOACEPOCHY ... ettt e e ettt e e e e e e taa e e e e eeetaaeeeeeeseataeeeeeeetraeeeeeentsaeeeseaarreeeeeaas 238
ENCOUCEPOCHXvviiiiieiiiee et e et e e e e ettt e e e e e e tabeeeeeeetaseeeeeesataaeeeeeetsaeeeeeenatsseeesensanreeeeeans 238
PATSEEPOCH ...ttt ettt ettt et a et sa e s ae e st ne et eas 239
PATSEEPOCHL ...ttt ettt et et e st st s b e ean ettt e aeenneeae 239
PATSEEPOCH2 ...ttt ettt et et et ettt et b e a e e 239
PATSEEPOCH3 ...ttt ettt et a et st st ettt a e e 240
PATSEEPOCHY ...ttt ettt et a e st ae st sttt e ae e e 240
COMPULEEPOCHLO ...ttt ettt e st sttt e ae e sae e saee 240
EPOCHIODIEAKAOWILvvvviieieeiiieee ettt eeete e e ee ettt e e e e ettt e e e e e ettt e e e eeetataaeeeeeetsaeeeeeeestsseeeeenarreeeeeensseeeeas 241
ENCOAECEP O CHLOcooiiiieieee et e et e e e e ettt e e e e e ettt e e e e e e eetaaee e e e e ttabeeeeeetrreeeeeenanseeeeas 241
1S i TeTe T (=) 23 S0 103 5 1 K TN A 241
1S i TeTe T =) 23 S0 103 5 1 K TN S 241
1S i TeTe T (=) 23 S0 103 5 1 K T 242
1S i TeTe T =) 23 S0 103 5 1 K T 242
1S i TeTele (=) 23 S0 103 5 1 K T R 242
PATSEEPOCHIO ...ttt et et e st st st san et be e saeenne e 243
PATSEEPOCH IO ...ttt ettt et h e et e bt st e s bt e sat e e bteeabe e e bt e sabeebeesabeebeenates 243
PATSEEPOCH IO _ 2.ttt sttt b e e bt e bt e st e s bt e sate e s bt e eabe e bt e sabeebeesateeseenates 244
PATSEEPOCH IO _3 ...ttt ettt e h et et e bt st e s bt e sate e s bt e eabe e bt e sabeebeesabeebeenates 244
PATSEEPOCH IO 4.ttt et h e e bt e bt st e s bt esa bt e bt e e abe e bt e sabeebeesabeebeesates 244

7 TT2000 Utility ROULINES ...ccoovvvnneeeccsssssnnneccsssssnnseccssssssassssssssssssssssssssssssssssssssssss 249

7.1
7.2
7.3
74
7.5

COmMPULETT2000.....c..ccceiiieiiiieie ettt ettt ettt et s et st e et st e bt sae e aeses e b e ses et e eas e seeanesueenneeneennenae 245
TT2000DTEAKAOWIL ..c.vieniiieiiieiie ettt ettt ettt et sb et st e bt e s et e e sbtesa bt e bt e sabeebeesabeenbeesateebeesateebaesaseenbaesaseeseess 246
ENCOAETT2000 ...ccueteeuiieiieeieeiie ettt ettt et ettt et sb ettt e bt e st e e sbtesa bt e b teeabeebeesabeeabeesabeenbeesateenbaesaseenbaesaseenseess 247
ParSETT2000......ccueeeeieetteetee ettt ettt ettt et e s bt e et e e s bt e s bt e s bt e sabeesabesabeesbeeeabeebeesabeesbeesabeenstesateebaesaneenne 248
CDFgetLastDateinLeapSecondSTablecccociiiiiiiiiiiiiniiiiieeeeee et e 248

8 CDF Utility MethOdS.....ccccceicssannicccssssnnneccssssssssseccssssssssssssssssssssssssssssssssssssssseses 249

8.1
8.2
83
84
85
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17

CDFFIIREXISES ...eutetieiiitieiieeteete ettt ettt ettt ettt ettt e et e et st e bt st e st st e ae s e s e b e sene bt eane s e e s e saeennesneennenaee 249
CDFZEtCheCKSUMVALUE «......oouieiiiiieiiiieiccteteetete ettt sttt et et e b e bt e nesae e e saeennesae 249
CDFgetCompressionTYPEeVALUC......c..coviriiiiiiiiiiiicictcee ettt sttt e e 249
CDFZetDataTYPEVALUEc.coouiiiiiiieiiiiecceeeet ettt ettt sttt st s a e sae e saeenesae 250
CDFZetDECOAINZVALUEooruieiiiieiiiieiectetecete ettt ettt st st s s b e a e nesae e e e saeennesae 250
CDFZEtENCOAINZVALUC.....c.eiiiiiiiiieiiieeieceee ettt ettt st et s sttt sae e saeenesae 251
CDFZEtFOIMAtVALUEoeeoiiiiiiiiiiieie ettt ettt st st st b et sae et saeennesae 251
CDFZEtMAJOTIty VAIUEcoueiiieiiiiiieicetetcceete ettt ettt et sttt et e ae e e s b e e e bt eanesae e e e saeennesaee 252
CDFgetSparseRECOTAVALUE.......c..co.eoiiiiiiiiiieiccecte ettt sttt et e 252
CDFgetStringCREeCKSUMLo.iiiiiiiiiiiieieeieeet ettt ettt sttt et et sae e s reeanennees 252
CDFgetStringCompreSSIONTYPEcveiieiiiiiiieieieieeteete ettt ettt et e a e st esae e e saeeanenaeen 252
CDFEetStringDataTyPecceevueeiiiieiiiiieieeieteeteee ettt sttt et sttt ettt sae et et esaeeaeesaeeanesreennenuees 253
CDFEetStringDECOAINGcc.eeueeiiiiieiiiiieieeieteet ettt ettt st st b e e et e st e e eae et eaeesaesaeesaeennesaeennenaees 253
CDFEetStriNZENCOTINGcoviiieiiiiieiiiieeeeteetet ettt ettt ettt ettt et et ea e et e saeeanesaeeanenaeen 253
CDFZEtSIIINZFOTINAL ..ottt ettt ettt sttt st ettt esae et eaeesaeeaeesaeeanesaeennenneen 253
CDFGEtSIINZIMAJOTILY ...enveeureieenieiieeteeie ettt ettt ettt et sttt st s bt e et e s et e essesaeesteeaeesaeeneeneennenneennennees 253
CDFgetStringSparsERECOTAc..coiiiiiiiiiiiiiiieietet ettt ettt ettt st esae e sreeanenaees 254

9 CDF EXception Methodscccceeeiccsssssnnnicccssssnnseecss 299

9.1
92

CDFZEICUITENESTATUSouveeuriiieniiritete et et et eet et ettt ettt et e s st eseesaee st saeessesanesaessn e besesesseeaneseennesseenneeneennenae 255
CDFZESTATUSIVISE ...ttt ettt ettt et ettt ettt et s et et s et e bt st e ae s ae e nesan e b e eas et e ean e b e eanesaeennesneennenaee 255

Chapter 1

1 Compiling

VB-CDF distribution is packaged in a self-extracting installer. Once the installer is downloaded and run, all distributed
files, i.e., APIs, test programs, batch files, help information and the document, will be placed into a directory of choice,
and environment variables, PATH and CsharpCDFDir, are automatically set. If an older version already exists in
the host machine, the installer will try to remove it before the new one is installed.

To VB, CDF library is unmanaged code distributed in the native DLL. The distributed .DLLs were built from a 32-bit
(x86) Windows and they can be run on a 32-bit Windows via the x86-compatible Common Language Runtime (CLR),
as well as a 64-bit Windows under WOW64.

1.1 Namespaces

Several classes are created for VB applications that facilitate the calls to the native CDF DLL. The CDF
namespace has been set up to include these CDF related classes: CDFConstants, CDFException, CDFAPIs.
and CDFUtils. CDFConstants provides commonly used constants that mimic to those defined in the .DLL
CDFException provides the exception handling when a failed CDF operation is detected. CDFAPIs provide all (static)
public (and private) methods that VB applications can call to interact with the similar, underlining functions provided
by the CDF Standard Interface in the .DLL. CDFUltils provides several small utility tools. These classes are distributed
in the form of signed assemblies , as .DLLs. To facilitate the access to functions in DLL, each VB application
must use the “edf” namespace in order to call the VB-CDF APIs. The following namespaces should be included by
VB applications that call CDF APIs:

imports System

imports System.Runtime.InteropServices
imports CDF

1.2 Base Classes

CDFAPIs is the main class that provides the VB-CDF APIs. Class CDFAPIs inherits from CDFConstants class,
which defines all constants referenced by the CDF. A VB application, if inheriting from the CDFAPIs class, can call

all CDFAPIs methods and refer CDFConstants’ constants directly, without specifying their class names. CDFException
class inherits from VB’s Exception class and CDFUtils class inherits from CDFConstants class as well, .

1.3 Compiling with Compiler Options

If a test application, e.g., TestCDF.vb, resides in the same directory as all distributed .d11 files, the following command
can be used to create an executable

vbc /platform:x86 /r:CDFAPIs.dll,CDFException.dll,
CDFConstants.dll,CDFUtils.dll TestCDF.vb

vbc.exe, the VB compiler, can be called automatically from an IDE such as Visual Studio
.NET, or run from the command line if the PATH environment variable 1is set properly.
vbc.exe can be found in the Windows's .NET Framework directory,
<windows>\Microsoft.NET\Framework\v#.# (v#.# as v3.5 or in the latest release version).

/platform:x86 option is required for the Windows running 64-bit OS as VB-CDF is built on an x86 (32-bit)
platform.

When the VB-CDF package is installed, the PATH environment variable is automatically modified to include the
installation directory so the native CDF .DLL, dlledfesharp.dll , becomes available when a VB application calls
CDF functions. Once the executable, TestCDF.exe, is created, it can be run from any directory.

If the VB applications that call CDF APIs reside in the directories other than the VB-
CDF installation directory, the following compilation command can be used to create an
executable (.exe):

vbc /platform:x86
/1ib:%CsharpCDFDir%
/r:cdfapis.dll,cdfconstants.dll, cdfexception.dll,cdfutils.dll
TestCDF.vb

where environment variable CsharpCDFDir, the installation directory for VB-CDF package, .is set when the installer is
run.

When the executable is run, an exception of “FileNotFoundException” will be
encountered as CDFAPIs could not be loaded. It’s because the distributed CDF assemblies
are considered private in the .NET environment. The .NET Framework’s runtime, Common
Language Runtime (CLR), will not be able to locate the files 1if the application
resides in a different directory from the called assemblies. To make these assemblies
global so CLR can locate, they need to be placed in the Global Assembly Cache (GAC)
repository. Use the following steps to do so:

gacutil /i CDFConstants.dll
gacutil /i CDFException.dll
gacutil /i CDFAPIs.dll
gacutil /i CDFUtils.dll

gacutil.exe (Global Assembly Cache utility) is a Microsoft Software Development Kits (SDKs) utility that
can insert, list and remove the assemblies to and from GAC. Gacutil.exe usually can be found at <Program
Files>\Microsoft SDKs\Windows\v#.#\bin (v#.# as v6.0A or in the latest release version). Use “gacutil /u” to remove
assemblies of older versions form GAC.

ildasm.exe is another SDKs utility that can be used to browse the assemblies for information as versions, keys, etc..

1.4 Sample programs

A couple of sample programs are included for distribution. Qst2vb.vb and Qst2vb2.vb, the quick test programs
for VB. Qst2vb.vb uses the VB value type for data read and write to a CDF file. Qst2vb2.vb passes in the base class
objects for arguments while reading the data from a CDF. Qts2cEpoch.vb , Qst2cEpochl6.vb and
Qst2¢TT2000.vb are three sample programs that show how EPOCH-related functions are used. A batch file,
tocompileVB.bat, is distributed along with the sample programs. Execute it from a Command Prompt window to
compile the programs into executables (.exe). Run totestvb.bat to test the executables to make sure they all work
fine.

Chapter 2

2 Programming Interface

2.1 Item Referencing

The following sections describe various aspects of the programming interface for VB applications.

For VB applications, all item numbers are referenced starting at zero (0). These include variable, attribute, and
attribute entry numbers, record numbers, dimensions, and dimension indices. Note that both rVariables and zVariables
are numbered starting at zero (0).

2.2 Compatible Types

As VB and CDF .DLL may have different sizes of the same data types, e.g. long, the size compatibility must be
enforced when passing the data between the two. On 32-bit Windows, 4-byte long has been used all over in the CDF
.DLL. However, long in VB is defined as 8-byte. So, to make the size compatible, 4-byte integer is used, instead, in
VB for each long type variable in the .DLL. For CDF data of type CDF _CHAR, or CDF_UCHAR, it is represented by
a string in VB. They are not size compatible, so conversion, performed in the APIs, is needed between a character array
in .DLL and string in VB.

The VB-CDF operations normally involve two variables: the operation status, status, and the CDF identifier, id:

status All VB-CDF functions, except CDFvarNum, CDFgetVarNum, CDFattrNum and
CDFgetAttrNum, return an operation status. This status is defined as an integer in
.DLL and VB. The CDFerror method can be used to inquire the meaning of any
status code. Appendix A lists the possible status codes along with their
explanations. Chapter 5 describes how to interpret status codes.

id An identifier (or handle) for a CDF that must be used when referring to a CDF.
This identifier has a type of long in VB. A new identifier is established whenever a
CDF is created or opened, establishing a connection to that CDF on disk. This long
value is used in all subsequent operations on a particular CDF. The value must not
be altered by an application.

2.3 CDFConstants

CDF defines a set of constants that are used all over the .DLL. These constants are mimicked in CDFConstants class
with compatible data types.

2.4 CDF status

These constants are of same type as the operation status, mentioned in 2.2.
CDF_OK A status code indicating the normal completion of a CDF function.
CDF_WARN Threshold constant for testing severity of non-normal CDF status codes.

Status less than CDF_OK normally indicate an error. For most cases, an exception will be thrown.

2.5 CDF Formats

SINGLE_FILE The CDF consists of only one file. This is the default file format.

MULTI FILE The CDF consists of one header file for control and attribute data and one
additional file for each variable in the CDF.

2.6 CDF Data Types

One of the following constants must be used when specifying a CDF data type for an attribute entry or variable.

CDF BYTE 1-byte, signed integer.
CDF_CHAR 1-byte, signed character.
CDF_INT1 1-byte, signed integer.
CDF_UCHAR 1-byte, unsigned character.
CDF _UINTI1 1-byte, unsigned integer.
CDF_INT2 2-byte, signed integer.
CDF_UINT2 2-byte, unsigned integer.
CDF_INT4 4-byte, signed integer.

CDF_UINT4 4-byte, unsigned integer.

CDF_INT8 8-byte, signed integer.
CDF _REALA4 4-byte, floating point.
CDF_FLOAT 4-byte, floating point.
CDF _REALS 8-byte, floating point.
CDF _DOUBLE 8-byte, floating point.
CDF_EPOCH 8-byte, floating point.

CDF_EPOCH16 two 8-byte, floating point.

CDF_TIME TT2000 8-byte, signed integer.

The following table depicts the equivalent data type between the CDF and VB:

CDF Data Type VB Data Type
CDF_BYTE sbyte
CDF_INT1 sbyte
CDF_UINT1 byte
CDF_INT2 short
CDF_UINT2 ushort
CDF_INT4 integer
CDF_UINT4 uinteger
CDF_INTS8 long
CDF_REAL4 single
CDF_FLOAT single
CDF_REALS double
CDF_DOUBLE double
CDF_EPOCH double
CDF_EPOCH16 double(2)'
CDF_TIME_TT20001 long
CDF_CHAR string
CDF_UCHAR string

CDF _CHAR and CDF _UCHAR are considered character data types. These are significant because only variables of
these data types may have more than one element per value (representing the length of the string, where each element is
a character).

NOTE: Keep in mind that an long is 8 bytes and that an integer is 4 bytes. Use integer for CDF data types CDF _INT4
and CDF_UINTH4, rather than long. Use long for CDF_INT8 and CDF_TIME TT2000 data types.

' CDF_EPOCH16 has two doubles, which corresponds to an array as double[] in VB.

2.7 Data Encodings

A CDF's data encoding affects how its attribute entry and variable data values are stored (on disk). Attribute entry and
variable values passed into the CDF library (to be written to a CDF) should always be in the host machine's native
encoding. Attribute entry and variable values read from a CDF by the CDF library and passed out to an application
will be in the currently selected decoding for that CDF (see the Concepts chapter in the CDF User's Guide).

HOST_ENCODING

NETWORK ENCODING

VAX ENCODING

ALPHAVMSd _ENCODING

ALPHAVMSg _ENCODING

ALPHAVMSi ENCODING

ALPHAOSF1_ENCODING
SUN_ENCODING
SGi_ENCODING

DECSTATION_ENCODING

IBMRS_ENCODING
HP_ENCODING
PC_ENCODING
NeXT_ENCODING

MAC_ENCODING

Indicates host machine data representation (native). This is the default
encoding, and it will provide the greatest performance when
reading/writing on a machine of the same type.

Indicates network transportable data representation (XDR).

Indicates VAX data representation. Double-precision floating-point
values are encoded in Digital's D FLOAT representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's D _FLOAT
representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's G_FLOAT

representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in IEEE representation.

Indicates DEC Alpha running OSF/1 data representation.
Indicates SUN data representation.

Indicates Silicon Graphics Iris and Power Series data representation.

Indicates DECstation data representation.

Indicates IBMRS data representation (IBM RS6000 series).
Indicates HP data representation (HP 9000 series).
Indicates PC data representation.

Indicates NeXT data representation.

Indicates Macintosh data representation.

When creating a CDF (via CDFcreate) or respecifying a CDF's encoding (via CDFsetEncoding), you may specify any
of the encodings listed above. Specifying the host machine's encoding explicitly has the same effect as specifying
HOST_ENCODING.

When inquiring the encoding of a CDF, either NETWORK ENCODING or a specific machine encoding will be
returned. (HOST ENCODING is never returned.)

2.8 Data Decodings

A CDF's decoding affects how its attribute entry and variable data values are passed out to a calling application. The
decoding for a CDF may be selected and reselected any number of times while the CDF is open. Selecting a decoding
does not affect how the values are stored in the CDF file(s) - only how the values are decoded by the CDF library. Any
decoding may be used with any of the supported encodings. The Concepts chapter in the CDF User's Guide describes a
CDF's decoding in more detail.

HOST_DECODING

NETWORK DECODING

VAX DECODING

ALPHAVMSd DECODING

ALPHAVMSg DECODING

ALPHAVMSi DECODING

ALPHAOSF1_DECODING
SUN_DECODING
SGi_DECODING
DECSTATION_DECODING
IBMRS_DECODING
HP_DECODING
PC_DECODING
NeXT_DECODING

MAC_DECODING

Indicates host machine data representation (native). This is the default
decoding.

Indicates network transportable data representation (XDR).

Indicates VAX data representation. Double-precision floating-point
values will be in Digital's D FLOAT representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's D FLOAT
representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's G FLOAT

representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in IEEE representation.

Indicates DEC Alpha running OSF/1 data representation.

Indicates SUN data representation.

Indicates Silicon Graphics Iris and Power Series data representation.
Indicates DECstation data representation.

Indicates IBMRS data representation (IBM RS6000 series).
Indicates HP data representation (HP 9000 series).

Indicates PC data representation.

Indicates NeXT data representation.

Indicates Macintosh data representation.

The default decoding is HOST DECODING. The other decodings may be selected via the CDFsetDecoding method.
The Concepts chapter in the CDF User's Guide describes those situations in which a decoding other than
HOST DECODING may be desired.

2.9 Variable Majorities

A CDF's variable majority determines the order in which variable values (within the variable arrays) are stored in the
CDF file(s). The majority is the same for rVariables and zVariables.

ROW_MAJOR C-like array ordering for variable storage. The first dimension in each
variable array varies the slowest. This is the default.

COLUMN_MAIJOR Fortran-like array ordering for variable storage. The first dimension in
each variable array varies the fastest.

Knowing the majority of a CDF's variables is necessary when performing hyper reads and writes. During a hyper read
the CDF library will place the variable data values into the memory buffer in the same majority as that of the variables.
The buffer must then be processed according to that majority. Likewise, during a hyper write, the CDF library will
expect to find the variable data values in the memory buffer in the same majority as that of the variables.

The majority must also be considered when performing sequential reads and writes. When sequentially reading a
variable, the values passed out by the CDF library will be ordered according to the majority. When sequentially
writing a variable, the values passed into the CDF library are assumed (by the CDF library) to be ordered according to
the majority.

As with hyper reads and writes, the majority of a CDF's variables affect multiple variable reads and writes. When
performing a multiple variable write, the full-physical records in the buffer passed to the CDF library must have the
CDF's variable majority. Likewise, the full-physical records placed in the buffer by the CDF library during a multiple
variable read will be in the CDF's variable majority.

For C applications the compiler-defined majority for arrays is row major. The first dimension of multi-dimensional
arrays varies the slowest in memory.

2.10 Record/Dimension Variances

Record and dimension variances affect how variable data values are physically stored.

VARY True record or dimension variance.

NOVARY False record or dimension variance.
If a variable has a record variance of VARY, then each record for that variable is physically stored. If the record
variance is NOVARY, then only one record is physically stored. (All of the other records are virtual and contain the
same values.)
If a variable has a dimension variance of VARY, then each value/subarray along that dimension is physically stored. If

the dimension variance is NOVARY, then only one value/subarray along that dimension is physically stored. (All
other values/subarrays along that dimension are virtual and contain the same values.)

2.11 Compressions

The following types of compression for CDFs and variables are supported. For each, the required parameters are also
listed. The Concepts chapter in the CDF User's Guide describes how to select the best compression type/parameters for
a particular data set. Among the available types, GZIP provides the best result.

10

NO COMPRESSION

RLE COMPRESSION

HUFF_COMPRESSION

AHUFF_COMPRESSION

GZIP_COMPRESSION

2.12 Sparseness

2.12.1 Sparse Records

No compression.
Run-length encoding compression. There is one parameter.

1. The style of run-length encoding. Currently, only the run-length
encoding of zeros is supported. This parameter must be set to
RLE OF ZEROs.

Huffman compression. There is one parameter.

1. The style of Huffman encoding. Currently, only optimal encoding
trees are supported. An optimal encoding tree is determined for each
block of bytes being compressed. This parameter must be set to
OPTIMAL ENCODING TREES.

Adaptive Huffman compression. There is one parameter.

1. The style of adaptive Huffman encoding. Currently, only optimal
encoding trees are supported. An optimal encoding tree is determined
for each block of bytes being compressed. This parameter must be set
to OPTIMAL _ENCODING_TREES.

Gnu's “zip" compression.” There is one parameter.

1. The level of compression. This may range from 1 to 9. 1 provides the
least compression and requires less execution time. 9 provide the most
compression but require the most execution time. Values in-between
provide varying compromises of these two extremes. 6 normally
provides a better balance between compression and execution.

The following types of sparse records for variables are supported.

NO_SPARSERECORDS

PAD SPARSERECORDS

PREV_SPARSERECORDS

No sparse records.

Sparse records - the variable's pad value is used when reading values from
a missing record.

Sparse records - values from the previous existing record are used when
reading values from a missing record. If there is no previous existing
record the variable's pad value is used.

? Disabled for PC running 16-bit DOS/Windows 3.x.

11

2.12.2 Sparse Arrays

The following types of sparse arrays for variables are supported.”

NO_SPARSEARRAYS No sparse arrays.

Note: sparse array is not supported and will not be implemented.

2.13 Attribute Scopes

Attribute scopes are simply a way to explicitly declare the intended use of an attribute by user applications (and the
CDF toolkit).

GLOBAL SCOPE Indicates that an attribute's scope is global (applies to the CDF as a
whole).
VARIABLE SCOPE Indicates that an attribute's scope is by variable. (Each rEntry or zEntry

corresponds to an rVariable or zVariable, respectively.)

2.14 Read-Only Modes

Once a CDF has been opened, it may be placed into a read-only mode to prevent accidental modification (such as when
the CDF is simply being browsed). Read-only mode is selected via CDFsetReadOnlyMode method. When read-only
mode is set, all metadata is read into memory for future reference. This improves overall metadata access performance
but is extra overhead if metadata is not needed. Note that if the CDF is modified while not in read-only mode,
subsequently setting read-only mode in the same session will not prevent future modifications to the CDF.

READONLYon Turns on read-only mode.

READONLY off Turns off read-only mode.

2.15 zModes

Once a CDF has been opened, it may be placed into one of two variations of zMode. zMode is fully explained in the
Concepts chapter in the CDF User's Guide. A zMode is selected via CDFsetzMode method.

zMODEoff Turns off zMode.
zMODEonl1 Turns on zMode/1.
zMODEon2 Turns on zMode/2.

? Obviously, sparse arrays are not yet supported.

12

2.16 -0.0 to 0.0 Modes

Once a CDF has been opened, the CDF library may be told to convert -0.0 to 0.0 when read from or written to that
CDF. This mode is selected via CDFsetNegtoPosfpOMode method.
NEGtoPOS{pOon Convert -0.0 to 0.0 when read from or written to a CDF.

NEGtoPOSpOoff Do not convert -0.0 to 0.0 when read from or written to a CDF.

2.17 Operational Limits

These are limits within the CDF library. If you reach one of these limits, please contact CDF User Support.
CDF_MAX DIMS Maximum number of dimensions for the rVariables or a zVariable.
CDF_MAX PARMS Maximum number of compression or sparseness parameters.

The CDF library imposes no limit on the number of variables, attributes, or attribute entries that a CDF may have. on

the PC, however, the number of rVariables and zVariables will be limited to 100 of each in a multi-file CDF because of
the 8.3 naming convention imposed by MS-DOS.

2.18 Limits of Names and Other Character Strings

CDF_PATHNAME LEN Maximum length of a CDF file name. A CDF file name may contain disk
and directory specifications that conform to the conventions of the
operating systems being used (including logical names on OpenVMS
systems and environment variables on UNIX systems).

CDF_VAR NAME LEN256 Maximum length of a variable name.

CDF_ATTR NAME LEN256 Maximum length of an attribute name.
CDF_COPYRIGHT LEN Maximum length of the CDF Copyright text.
CDF_STATUSTEXT LEN Maximum length of the explanation text for a status code.

2.19 Backward File Compatibility with CDF 2.7

By default, a CDF file created by CDF V3.0 or a later release is not readable by any of the CDF releases before CDF
V3.0 (e.g. CDF 2.7.x, 2.6.x, 2.5.X, etc.). The file incompatibility is due to the 64-bit file offset used in CDF 3.0 and
later releases (to allow for files greater than 2G bytes). Note that before CDF 3.0, 32-bit file offset was used.

13

There are two ways to create a file that’s backward compatible with CDF 2.7 and 2.6, but not 2.5. A method,
CDFsetFileBackward, can be called to control the backward compatibility from an application before a CDF file is
created (i.e. CDFcreateCDF). This method takes an argument to control the backward file compatibility. Passing a
flag value of BACKWARDFILEon, defined in CDFConstants, to the method will cause new files being created to
be backward compatible. The created files are of version V2.7.2, not V3.*. This option is useful for those who wish to
create and share files with colleagues who still use a CDF V2.7/V2.6 library. If this option is specified, the maximum
file size is limited to 2G bytes. Passing a flag value of BACKWARDFILEoff will use the default file creation mode
and newly created files will not be backward compatible with older libraries. The created files are of version 3.* and
thus their file sizes can be greater than 2G bytes. Not calling this method has the same effect of calling the method
with an argument value of BACKWARDFILEoff.

The following example creates two CDF files: “MY_ TEST1.cdf” is a V3.* file while “MY_TEST2.cdf” a V2.7 file.

dim id1 as long, id2 as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
try

status = CDFcreateCDF(“MY_TEST1”, id1)
CDFsetFileBackward(BACKWARDFILEon)
status = CDFCreateCDF(“MY_ TEST2”, id2)
catch ex as Exception
end try
Another method is through an environment variable and no method call is needed (and thus no code change involved in
any existing applications). The environment variable, CDF_FILEBACKWARD on Windows, is used to control the
CDF file backward compatibility. If its value is set to “TRUE”, all new CDF files are backward compatible with CDF
V2.7 and 2.6. This applies to any applications or CDF tools dealing with creation of new CDFs. If this environment
variable is not set, or its value is set to anything other than “TRUE”, any files created will be of the CDF 3.* version

and these files are not backward compatible with the CDF 2.7.2 or earlier versions .

Normally, only one method should be used to control the backward file compatibility. If both methods are used, the
method call through CDFsetFileBackward will take the precedence over the environment variable.

You can use the CDFgetFileBackward method to check the current value of the backward-file-compatibility flag. It
returns 1 if the flag is set (i.e. create files compatible with V2.7 and 2.6) or 0 otherwise.

dim flag as integer ‘ Returned status code.

flag = CDFgetFileBackward()

2.20 Checksum

To ensure the data integrity while transferring CDF files from/to different platforms at different locations, the
checksum feature was added in CDF V3.2 as an option for the single-file format CDF files (not for the multi-file

14

format). By default, the checksum feature is not turned on for new files. Once the checksum bit is turned on for a
particular file, the data integrity check of the file is performed every time it is open and a new checksum is computed
and stored when it is closed. This overhead (performance hit) may be noticeable for large files. Therefore, it is
strongly encouraged to turn off the checksum bit once the file integrity is confirmed or verified.

If the checksum bit is turned on, a 16-byte signature message (a.k.a. message digest) is computed from the entire file
and appended to the end of the file when the file is closed (after any create/write/update activities). Every time such
file is open, other than the normal steps for opening a CDF file, this signature, serving as the authentic checksum, is
used for file integrity check by comparing it to the re-computed checksum from the current file. If the checksums
match, the file’s data integrity is verified. Otherwise, an error message is issued. Currently, the valid checksum modes
are: NO_CHECKSUM and MD5_CHECKSUM, both defined in CDFConstants class. With MD5_CHECKSUM, the
MDS5 algorithm is used for the checksum computation. The checksum operation can be applied to CDF files that were
created with V2.7 or later.

There are several ways to add or remove the checksum bit. One way is to use the method call with a proper checksum
mode. Another way is through the environment variable. Finally, CDFedit and CDFconvert (CDF tools included as
part of the standard CDF distribution package) can be used for adding or removing the checksum bit. Through the
Interface call, you can set the checksum mode for both new or existing CDF files while the environment variable
method only allows to set the checksum mode for new files.

The environment variable CDF_CHECKSUM on Windows is used to control the checksum option. If its value is set
to “MDS5”, all new CDF files will have their checksum bit set with a signature message produced by the MD5

algorithm. If the environment variable is not set or its value is set to anything else, no checksum is set for the new files.

The following example set a new CDF file with the MD5 checksum and set another existing file’s checksum to none.

Dim idl as long, id2 as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim checksum as integer ¢ Checksum code.

'status = CDFCreateCDF(“MY_TEST1”, id1)

'status = CDFsetChecksum (id1, MD5_CHECKSUM)
status = CDFclose(id1)

'status = CDFopen(“MY_TEST2”, id2)

'status = CDFsetChecksum (id2, NO_CHECKSUM)

status = CDFclose(id2)

2.21 Data Validation

To ensure the data integrity of CDF files and secure operation of CDF-based applications, a data validation feature has
been added to the CDF opening logic. This process, as the default, performs sanity checks on the data fields in the
CDF's internal data structures to make sure that the values are within valid ranges and consistent with the defined

15

values/types/entries. It also ensures that the variable and attribute associations within the file are valid. Any
compromised CDF files, if not validated properly, could cause applications to function unexpectedly, e.g.,
segmentation fault due to a buffer overflow. The main purpose of this feature is to safeguard the CDF operations, catch
any bad data in the file and end the application gracefully if any bad data is identified. Using this feature, in most
cases, will slow down the file opening process especially for large or very fragmented files. Therefore, it is
recommended that this feature be turned off once a file’s integrity is confirmed or verified. Or, the file in question may
need a file conversion, which will consolidate the internal data structures and eliminate the fragmentations. Check the
cdfconvert tool program in the CDF User’s Guide for further information. *

This validation feature is controlled by setting/unsetting the environment variable CDF_VALIDATE on Windows
is not set or set to “yes”, all CDF files are subjected to the data validation process. If the environment variable is set to
“no”, then no validation is performed. The environment variable can be set at logon or through the command line,
which goes into effect during a terminal session, or within an application, which is good only while the application is
running. Setting the environment variable, using C method CDFsetValidate, at application level will overwrite the
setup from the command line. The validation is set to be on when VALIDATEFILEon is passed in as an argument.
VALIDATEFILEoff will turn off the validation. The function, CDFgetValidate,will return the validation mode,
1 (one) means data being validated, 0 (zero) otherwise. If the environment variable is not set, the default is to validate
the CDF file upon opening.

The following example sets the data validation on when the CDF file, “TEST”, is open.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.

CDFsetValidate (VALIDATEFILEon)
status = CDFopen(“TEST”, id)

The following example turns off the data validation when the CDF file, “TEST” is open.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.

CDFsetValidate (VALIDATEFILEofY)
status = CDFopen(“TEST”, id)

2.22 8-Byte Integer

Both data types of CDF _INT8 and CDF_TIME TT2000 use 8-byes signed integer. VB’s “long” type is the one that
matches to these two types.

* The data validation during the open process will not check the variable data. It is still possible that data could be
corrupted, especially compression is involved. To fully validate a CDF file, use cdfdump tool with “-detect” switch.

16

2.23 Leap Seconds

CDF’s CDF_TIME_TT2000 is the epoch value in nanoseconds since J2000 (2000-01-01T12:00:00.000000000)
with leap seconds included. The CDF uses an external or internal table for computing the leap seconds. The external
table, if present and properly pointed to by a predefined environment variable, will be used over the internal one. When
the VB package is installed, the external table and environment variables are set so it can be used. If the external table
is deleted or no longer pointed by the environment variable, the internal, hard-coded table in the library is used. When a
new leap second is added, if the external table is updated accordingly, then the software does not need to be upgraded.
Refer to CDF User’s Guide for leap seconds.

A tool program, CDFleapsecondsInfo distributed with the CDFpackage, will show how the table is referred and
when the last leap second was added. Optionally, it can dump the table contents.

17

Chapter 3

3 Understanding the Application
Interface

This chapter provides some basic information about the VB‘s Application Interfaces (APIs) to CDF, and the native
CDF .DLL The following chapter will describe each API in detail.

3.1 Arguments Passing

Each CDF API has a sequence of parameters, which define the set of arguments that must be provided for that method
in VB applications. Being a strongly typed language, VB’s APIs to CDF follow the same rules for the parameters.
Arguments for APIs that perform CDF data get, put or inquire operations are required to have the signatures of the
defined VB value/string type or basic Object classes.

The input parameters in APIs for the CDF identifier, variable number, attribute number, entry
number, record number, record counts and record indices, etc, are always of fixed types. They must
be a scalar of type lomng for CDF identifier, integer for variable/attribute/entry number and record number/count, or
an array of integers, integer(), for variable dimensional sizes/variances and record data indices, counts and intervals.
The output parameters must be in either of the defined type or the VB base Object class. For example, for a
returned data of type integer, the passing argument in the calling application can be either a defined integer variable, or
a variable of object class. Compilation error will occur if any one of the such arguments from the applications does not
match to that defined in the API.

A CDF identifier, when a CDF is open or created, is presented as a long variable, even in the underlying C# and CDF
native library it is a pointer.

For example, CDFsetEncoding and CDFgetEncoding are used to set and get the data encoding of a CDF. Both
APIs take two parameters, the CDF identifier, always a long, and the encoding, an integer. CDFsetEncoding take both
parameters from applications for input, while CDFgetEncoding has the CDF identifier as input and the encoding for
output. The following code shows how these methods can be used.

To set a CDF’s encoding,
dim status as integer

dim id as long
dim encoding as integer

19

encoding=IBMPC_ENCODING
status = CDFsetEncoding(id, encoding)

The CDF identifier, id, is set when a CDF is open or created. The encoding is set to PC encoding, defined in
CDFConstants class.

Similarly, to get the CDF’s encoding:

status = CDFgetEncoding(id, encoding)

APIs that read or write CDF data, either variable’s data (and their pad value) or metadata, are flexible when dealing
with data of different pre-defined CDF types, e.g., CDF INT1, CDF UINT1, CDF FLOAT, CDF CHAR,
CDF_EPOCH, etc. To pass the data value(s) to the APIs, one of the following forms can be used, depending on the
data type: VB numeric type or string in a scalar or array or simply the VB base object class.
String or an array of strings involves data of CDF_CHAR or CDF_UCHAR type. As VB’s character/string has a
different characteristic from the ASCII-based code in the CDF native DLL library, some manipulations are performed
by the APIs when dealing with such data. VB objects can be used, as a general form for all data value(s), when
reading/writing data from CDF. The called APIs will handle the passed object and map it to its corresponding CDF data
type. Type casting the objects returned by the APIs may be needed.

For example, methods: CDFputzVarData and CDFgetzVarData are used to write and read a single data
value for an zVariable in a CDF. Both take five parameters. The first four, the CDF identifier, variable number, record
number and indices, are for input and of fixed types of: long, integer, integer and an array of integers
(integer()), respectively. The last parameter is for data value, as an input for CDFputzVarData or an output for
CDFgetzVarData. To call CDFputzVarData, the data value has to be defined to match to variable’s underlying data
type and given a value. It is passed in as is. To retrieve the data by CDFgetzVarData, just specifies the variable with a
proper data type and pass in to the API.

The following samples show how these arguments are set up to write a data value to record 1, indices (1,1) for
zVariable, “zVarl”, a 2-dimentional of CDF_INT?2.

dim status as integer

dim id as long

dim varNum as integer

dim recNum as integer = 1

dim indices() as integer = {1,1}

dim value as short = 100

varNum = CDFvarNum (id, “zVarl”)

status = CDFputzVarData(id, varNum, recNum, indices, value)
To read the data value the same variable at the same record and indices:
dim value as short

status = CDFgetzVarData(id, varNum, recNum, indices, value)

Similarly, value can be defined as a VB base object:

Dim valueo as object
status = CDFgetzVarData(id, varNum, recNum, indices, valueo)

Either use such statement:

20

Dim value as short = valueo

Or, use a proper type casting method, such as CType or DirectCast for a scalar, to make it a value type after the
object is returned. For object of an array, just assign it to a properly type-defined, dimensional variable.

dim value as short = Ctype(valueo, short)

APIs that handle multiple data values reads and writes, e.g, CDFputzVarRecordData and
CDFgetzVarRecordData for writing and reading a full data record an zVariable, are similar. They both take four
parameters: the first three, as input, are the CDF identifier, variable number, record number of the fixed types of long,
integer and integer, respectively, and the last one is the data values, input for CDFputzVarRecordData or output for
CDFgetzVarRecordData. The data values have to be defined (and assigned for input), according to the variable’s
underlying data type, and passed in as is.

The following samples show how the arguments are set in CDFputzVarRecordData to write the full record 1 for
zVariable, “zVarl”, a 2-dim (2,3) of type short. The first one passes the data value object as is, while the second one
uses a pointer to the data values.

dim status as integer

dim id as long

dim varNum as integer

dim recNum as integer = 1

dim values(,) as short = {{1,2,3},{11,12,13}}

varNum = CDFvarNum (id, “zVarl”)
status = CDFputzVarRecordData(id, varNum, recNum, values)

For CDFgetzVarRecordData to read back the same variable’s record data, one can use the same arguments as
CDFputzVarRecordData.

dim id as long

dim varNum as integer

dim recNum as integer = 1

dim values (,) as short

varNum = CDFvarNum (id, “zVarl”)

status = CDFgetzVarRecordData(id, varNum, recNum, values)

Console.WriteLine(“{0},{1},{2}”+Environment.Newline+”{3},{4},{5}”,values(0.0),values(0.1), values(0.2), _
values(1.0),values(1.1), values(1.2))

Alternatively, use a base object for the output:

dim valueso as object

status = CDFgetzVarRecordData(id, varNum, recNum, valueso)
dim values(,) as short = valueo

Console.WriteLine(“{0},{1},{2}”+Environment.Newline+”{3},{4},{5}”,values(0.0),values(0.1), values(0.2), _
values(1.0),values(1.1), values(1.2))

21

3.2 Multi-Dimensional Arrays

For data involved multidimensional arrays, CDF’s native .DLL data structure is equivalent to the rectangular
array in VB. Multidimensional arrays of jagged type are not supported by APIs. An extra dimension is added to the
retrieved data if the operations involve multiple records. For example, to read two full records from a variable of two-
dimensions, 3-by-4 by the hyper get method, the returned will be a three-dimensional, 2-by-3-by-4, object. Conversely,
if the hyper read skips certain dimension(s) from an operation, the returned object’s dimensionality will be reduced
accordingly. For example, to read a row or column from a variable’s two-dimensional record, the returned will be a
single array of either column or row count.

3.3 Data Type Equivalent

The following list shows the data types used by CDF and their corresponding types in VB:

e CDF_INTI sbyte

e CDF_INT2 short

+ CDF_INT4 int

¢ CDF_INTS long

+ CDF_UINTI byte

* CDF_UINT2 ushort
+ CDF _UINT4 uint

* CDF BYTE sbyte

¢ CDF REAL single
* CDF FLOAT single
* CDF DOUBLE double
* CDF_REALS double
* CDF_EPOCH double

¢ CDF_EPOCHI16 double(2)

¢ CDF_TIME_TT2000 long

¢ CDF_CHAR string (with manipulation)
* CDF_UCHAR string (with manipulation)

34 Fixed Statement

Fixed statement is required to pin VB managed data objects, mainly arrays of numeric data, so that pointers of the
objects can be safely used and passed to the CDF APIs. By doing so, the objects’ addresses in the heap won’t be moved
around by the garbage collector during the operation.

For example, CDFhyperGetzVarData method can be called to retrieve a number of data values for a zVariable. For
instance, the following application code can be used to read the first four (4) records from a zVariable of 2-dim (2,3) of

22

type CDF _INT4. The declared data buffer, a 3-dimensional of int, is blocked in the fixed statement when the call is
made.

dim id as long

dim status as integer

dim varNum as integer

dim recNum as integer = 0, recCount as integer = 4, recInterval as integer = 1

dim indices() as integer = {0, 0}

dim counts() as integer = {2, 3}

dim intervals() as integer = {1,1}

dim data(4,2,3) as integer ¢ Dimension: record number, row, column

status = CDFhyperGetzVarData (id, varNum, recNum, recCount, recInterval, indices, counts, intervals, data)

3.5 Exception Handling

Except a few APIs, each call to a CDF method will return an operation status. If the status is abnormal, less than
CDF_OK, an exception might be thrown. It is recommended that the code for the CDF-based application be surrounded
by a try-catch block so an exception can be caught and handled. The methods to check the existence of a CDF entity,
e.g., entry, attribute, variable, will not throw exception if that entity is not in the CDF. The returned, informational
status will reflect so. Once an exception is thrown, the thrown object, if initiated from the CDF APIs, is a
CDFException class object. There are a couple of class methods, GetCurrentStatus and GetStatusMsg ,which
can be used to acquire the status when an exception is thrown and the descriptive information about that exception.

dim id as long
dim status as integer
dim encoding as integer

try
status = CDFopen(“TEST”, id)

status = CDFgetEncoding(id, encoding)

status = CDFclose(id)
catch ex as Exception
Console.WriteLine(“Exception: “+ex.toString())
Or,
dim status] as integer = ex.GetCurrentStatus()
Console.WriteLine(“Exception: “+ex.GetStatusMsg(status1))

}

3.6 Dimensional Limitations

23

The VB to CDF APIs follow the same dimensional restriction as in the CDF native DLL: a limit of tem (10)
dimensions a CDF variable’s numeric typed data record can have. For string typed data, represented in a CDF file
with CDF_CHAR or CDF_UCHAR type, a limit of four (4) dimensions is applied.

24

Chapter 4

4 Application Interface

This chapter covers all Application Interfaces (APIs) that VB applications can call to interact with CDF. Since C#
APIs to CDF had already been developed, they are the base for all .Net Framework applications for CDF. Pointers are
used extensively for passing the data, e.g., CDF identifier as void *, between C# applications, C# APIs and CDF native
DLL. Such pointer-based functions are hard to handle in VB application. For that, a new set of APIs is added to C#
APIs suite to specifically allow VB applications to use C# functions without the use of pointers.

There are two types of variables (rVariable and zVariable) in CDF, and they can happily coexist in a CDF: Every
rVariable in a CDF must have the same number of dimensions and dimension sizes while each zVariable can have its
own dimensionality. Since all the rVariables in a CDF must have the same dimensions and dimension sizes, there'll be
a lot of disk space wasted if a few variables need big arrays and many variables need small arrays. Since zVariable is
more efficient in terms of storage and offers more functionality than rVariable, use of zVariable is strongly
recommended. As a matter of fact, there’s no reason to use rVariables at all if you are creating a CDF file from scratch.
One may wonder why there are rVariables and zVariables, not just zVariables. When CDF was first introduced, only
rVariables were available. The inefficiencies with rVariables were quickly realized and addressed with the introduction
of zVariables in later CDF releases.

The description for each API will detail its parameters: their types, for input or output and what the method returns.
APIs that handle read/write of variable data and attribute entry may use a special indicator: TYPE, to specify the
parameters that can have different signatures. The acceptable data types for such method are specified. For example,
CDFgetzVarData method, returning a single zVariable value, is described as:

integer CDFgetEncoding (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varNum as integer, in -- Variable number.
recNum as integer, in -- Record number.
indices as integer(), in -- Dimension indices.
value as TYPE) ¢ out -- Data value.
‘TYPE -- VB value/string type or object

TYPE, as specified, can be defined a VB value or string (matching to the variable’s underlying data type) or simply a
VB base Object. The following sample shows how the API is used to retrieve a data value from the zVariable
“my_var”, a 2-dimensional, CDF_INT4 type at indices of {1,1} for record 1:

dim status as integer

dim indices() as integer = {1, 1}
dim id as long

dim value as integer

;tél.tus = CDFgetEncoding(id, CDFvarNum(id, “my_var”), 1, indices, value)

25

Alternatively, value can be defined as object:
dim value as object

é.tél.tus = CDFgetEncoding(id, CDFvarNum(id, “my_var”), 1, indices, value)

APIs are grouped, based on the CDF entities they operate on. These groups consist of general library information, CDF
as a whole, variable and attribute/entry.

4.1 Library Information

The functions in this section are related to the current CDF library being used for the CDF operations, and they provide
useful information such as the current library version number and Copyright notice.

4.1.1 CDFgetDataTypeSize

3

integer CDFgetDataTypeSize (out -- Completion status code.
dataType as integer, ‘ in-- CDF data type.

numBytes as integer) out -- # of bytes for the given type.
CDFgetDataTypeSize returns the size (in bytes) of the specified CDF data type.

The arguments to CDFgetDataTypeSize are defined as follows:

dataType The CDF supported data type.

numBytes The size of dataType.

4.1.1.1. Example(s)

The following example returns the size of the data type CDF_INT4 that is 4 bytes.

dim status as integer ‘ Returned status code.
Dim numBytes as integer ¢ Number of bytes.
try

status = CDFgetDataTypeSize(CDF_INT4, &numBytes)

catch ex as Exception

26

end try

4.1.2 CDFgetLibraryCopyright

3

integer CDFgetLibraryCopyright (
copyright as string)

out -- Completion status code.
out -- Library copyright.

3

CDFgetLibraryCopyright returns the Copyright notice of the CDF library being used.
The arguments to CDFgetLibraryCopyright are defined as follows:

copyright The Copyright notice.

4.1.2.1. Example(s)

The following example returns the Copyright of the CDF library being used.

dim status as integer ‘ Returned status code.
Dim copyright as string ¢ CDF library copyright.
try

status = CDFgetLibraryCopyright(copyright)

catch ex as Exception

end try

4.1.3 CDFgetLibraryVersion

integer CDFgetLibraryVersion (
version as integer,

release as integer,

increment as integer,
subIncrement as string)

out -- Completion status code.
out -- Library version.

out -- Library release.

out -- Library increment.

out -- Library sub-increment.

CDFgetLibraryVersion returns the version and release information of the CDF library being used.

The arguments to CDFgetLibraryVersion are defined as follows:

27

version The library version number.

release The library release number.
increment The library incremental number.
sublncrement The library sub-incremental string, a single character.

4.1.3.1. Example(s)

The following example returns the version and release information of the CDF library that is being used.

dim status as integer ‘ Returned status code.

Dim version as integer * CDF library version number.

Dim release as integer CDF library release number.

Dim increment as integer CDF library incremental number.

Dim sublncrement as string CDF library sub-incremental character.

3
3

try
status = CDFgetLibraryVersion(version, release, increment, subIncrement)

catch ex as Exception

end try

4.1.4 CDFgetStatusText

3

dim varNum as integer CDFgetStatusText(
status as integer,
message as string)

out -- Completion status code.
in -- The status code.
out -- The status text description.

3

3

CDFgetStatusText is identical to CDFerror, a legacy CDF function, (see section 4.2.8), and the use of this method is
strongly encouraged over CDFerror as it might not be supported in the future. This method is used to inquire the text
explanation of a given status code. Chapter 5 explains how to interpret status codes and Appendix A lists all of the
possible status codes.

The arguments to CDFgetStatusText are defined as follows:

status The status code to check.

message The explanation of the status code.

28

4.1.4.1. Example(s)

The following example displays the explanation text for the error code that is returned from a call to CDFopenCDF.

dim id as long ¢ CDF identifier.

dim status as integer ‘ Returned status code.
Dim text as string ¢ Explanation text.

try

status = CDFopenCDF ("giss_wetl", id)
status = CDFclose(id)
catch ex as Exception

text = CDFgetStatusMsg(ex.CDFgetCurrentStatus()) ...
end try

4.2 CDF

The functions in this section provide CDF file-specific operations. Any operations involving variables or attributes are
described in the following sections. This CDF has to be a newly created or opened from an existing one.

4.2.1 CDFclose

Integer CDFclose(¢ out -- Completion status code.
id as long) ‘ in-- CDF identifier.

CDFclose closes the specified CDF. The CDEF's cache buffers are flushed the CDF's open file is closed (or files in the
case of a multi-file CDF) and the CDF identifier is made available for reuse.

NOTE: You must close a CDF with CDFclose to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the
CDF's cache buffers are left unflushed.

The arguments to CDFclose are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

4.2.1.1. Example(s)

29

The following example will close an open CDF.

dim id as long ¢ CDF identifier.
dim status as integer ‘ Returned status code.
try

status = CDFopen(“...”, id)
status = CDFclose (id)
catch ex as Exception

end try

4.2.2 CDFcloseCDF

Integer CDFcloseCDF (¢ out -- Completion status code.
id as long) ‘ in-- CDF identifier.

CDFcloseCDF closes the specified CDF. This method is identical to CDFclose, a legacy CDF function. The use of this
method is strongly encouraged over CDFclose as it might not be supported in the future. The CDF's cache buffers are
flushed the CDEF's open file is closed (or files in the case of a multi-file CDF) and the CDF identifier is made available
for reuse.

NOTE: You must close a CDF with CDFcloseCDF to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFcloseCDF,
the CDF's cache buffers are left unflushed.

The arguments to CDFcloseCDF are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreateCDF or
CDFopenCDF.

4.2.2.1. Example(s)

The following example will close an open CDF.

dim id as long ¢ CDF identifier.
dim status as integer ‘ Returned status code.
try

30

status = CDFopenCDF ("giss_wetl", id)

status = CDFcloseCDF (id)

catch ex as Exception

end try

4.2.3 CDFcreate

Integer CDFcreate(
CDFname as string,
numDims as integer,
dimSizes as integer(),
encoding as integer,
majority as integer,

id as long)

out -- Completion status

‘ in -- CDF file name.

in -- Number of dimensions, rVariables.
‘¢ in -- Dimension sizes, rVariables.
in -- Data encoding.

in -- Variable majority.

¢ out -- CDF identifier.

CDFcreate, a legacy CDF function, creates a CDF as defined by the arguments. A CDF cannot be created if it already
exists. (The existing CDF will not be overwritten.) If you want to overwrite an existing CDF, you must first open it
with CDFopenCDF, delete it with CDFdeleteCDF, and then recreate it with CDFcreate. If the existing CDF is
corrupted, the call to CDFopen will fail. (An error code will be returned.) In this case you must delete the CDF at the
command line. Delete the dotCDF file (having an extension of .cdf), and if the CDF has the multi-file format, delete all
of the variable files (having extensions of .v0,.v1,. .. and .z0,.z1,.. .).

The arguments to CDFcreate are defined as follows:

CDFname

numDims

dimSizes

encoding

majority

id

The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

Number of dimensions the rVariables in the CDF are to have. This may be as few as zero
(0) and at most CDF_ MAX DIMS.

The size of each dimension. Each element of dimSizes specifies the corresponding
dimension size. Each size must be greater then zero (0). For 0-dimensional rVariables this

argument is ignored (but must be present).

The encoding for variable data and attribute entry data. Specify one of the encodings
described in Section 2.7.

The majority for variable data. Specify one of the majorities described in Section 2.9.

The identifier for the created CDF. This identifier must be used in all subsequent operations
on the CDF.

When a CDF is created, both read and write access are allowed. The default format for a CDF created with CDFcreate
is specified in the configuration file of your CDF distribution. Consult your system manager for this default.

31

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly
written to disk.

4.2.3.1. Example(s)

The following example creates a CDF named “testl.cdf” with network encoding and row majority.

dim id as long ¢ CDF identifier.

Dim status as integer ‘ Returned status code.

dim numDims as integer = 3 ¢ Number of dimensions, rVariables.
Dim dimSizes() as integer = {180,360,10} ¢ Dimension sizes, rVariables.

dim majority as integer = ROW_MAJOR ¢ Variable majority.

try

status = CDFcreate ("testl", numDims, dimSizes, NETWORK ENCODING, majority, id)
catch ex as Exception

end try

4.2.4 CDFcreateCDF

Integer CDFcreateCDF(¢ out -- Completion status code.
cdfName as string, ‘¢ in -- CDF file name.
id as long) ¢ out-- CDF identifier.

CDFcreateCDF creates a CDF file. This method is a simple form of CDFcreate without the number of dimensions,
dimensional sizes, encoding and majority arguments. It is the better method if only zVariables are to be created in the
CDF. The created CDF will use the default encoding (HOST _ENCODING) and majority (ROW_MAJOR). A CDF
cannot be created if it already exists. (The existing CDF will not be overwritten.) If you want to overwrite an existing
CDF, you can either manually delete the file or open it with CDFopenCDF ,delete it with CDFdeleteCDF, and then
recreate it with CDFcreateCDF. If the existing CDF is corrupted, the call to CDFopenCDF will fail. (An error code
will be returned.) In this case you must delete the CDF at the command line. Delete the dotCDF file (having an
extension of .cdf), and if the CDF has the multi-file format, delete all of the variable files (having extensions of .v0,.v1,.
..and .z0,.z1,.. .).

Note that a CDF file created with CDFcreateCDF can only accept zVariables, not rVariables. But this is fine since
zVariables are more flexible than rVariables. See the third paragraph of Chapter 3 for the differences between
rVariables and zVariables.

The arguments to CDFcreateCDF are defined as follows:
CDFname The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters. A CDF file name may contain disk and directory

specifications that conform to the conventions of the operating system being used (including
logical names on OpenVMS systems and environment variables on UNIX systems).

32

UNIX: File names are case-sensitive.

id The identifier for the created CDF. This identifier must be used in all subsequent operations
on the CDF.

When a CDF is created, both read and write access are allowed. The default format for a CDF created with
CDFcreateCDF is specified in the configuration file of your CDF distribution. Consult your system manager for this

default.

NOTE: CDFcloseCDF must be used to close the CDF before your application exits to ensure that the CDF will be
correctly written to disk.

4.2.4.1. Example(s)

The following example creates a CDF named “testl.cdf” with the default encoding and majority.

dim id as long ¢ CDF identifier.
dim status as integer ‘ Returned status code.
try

status = CDFcreateCDF ("testl", id)
status = CDFclose (id)
catch ex as Exception

end try

4.2.5 CDFdelete

integer CDFdelete(¢ out -- Completion status code.
id as long) ‘ in-- CDF identifier.

CDFdelete, a legacy CDF function, deletes the specified CDF. The CDF files deleted include the dotCDF file (having
an extension of .cdf), and if a multi-file CDF, the variable files (having extensions of .v0,.v1,. . . and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will
not be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDFdelete are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

33

4.2.5.1. Example(s)

The following example will open and then delete an existing CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
try

status = CDFopen ("test2", id)
status = CDFdelete (id)

catch ex as Exception

end try

4.2.6 CDFdeleteCDF

integer CDFdeleteCDF(* out -- Completion status code.
id as long) ‘ in-- CDF identifier.

CDFdeleteCDF deletes the specified CDF. This method is identical to CDFdelete, and the use of this method is
strongly encouraged over CDFdelete as it might not be supported in the future. The CDF files deleted include the
dotCDF file (having an extension of .cdf), and if a multi-file CDF, the variable files (having extensions of .v0,.v1,. . .
and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will
not be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDFdeleteCDF are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

4.2.6.1. Example(s)

The following example will open and then delete an existing CDF.

dim id as long ¢ CDF identifier.

34

dim status as integer ‘ Returned status code.

try
'sltz.i'tus = CDFopenCDF ("test2", id)
'sltéltus = CDFdeleteCDF(id)

c;t.ch ex as Exception

end try

4.2.7 CDFdoc

integer CDFdoc(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

version as integer, ¢ out -- Version number.
release as integer, out -- Release number.
copyright as string) out -- copyright.

CDFdoc is used to inquire general information about a CDF. The version/release of the CDF library that created the
CDF is provided (e.g., CDF V3.1 is version 3, release 1) along with the CDF copyright notice. The copyright notice is
formatted for printing without modification.

The arguments to CDFdoc are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

version The version number of the CDF library that created the CDF.
release The release number of the CDF library that created the CDF.
copyright The Copyright notice of the CDF library that created the CDF. This string will contain a

newline character after each line of the Copyright notice.

4.2.7.1. Example(s)

The following example returns and displays the version/release and copyright notice.

dim id as long ¢ CDF identifier.

dim status as integer ‘ Returned status code.

Dim version as integer * CDF version number.
Dim release as integer CDF release number.
Dim copyright as string ¢ Copyright notice.

3

35

try
status = CDFdoc (id, version, release, copyright)
catch ex as Exception

end try

4.2.8 CDFerror’

3

integer CDFerror(
status as integer,
message as string)

out -- Completion status code.
in -- Status code.
out -- Explanation text.

3

3

CDFerror, a legacy CDF function, is used to inquire the explanation of a given status code (not just error codes).
Chapter 5 explains how to interpret status codes and Appendix A lists all of the possible status codes.

The arguments to CDFerror are defined as follows:
status The status code to check.

message The explanation of the status code.

4.2.8.1. Example(s)

The following example displays the explanation text if an error code is returned from a call to CDFopen.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim text as string ¢ Explanation text.

try

status = CDFopen ("giss_wetl", id)

catch ex as Exception
dim status as integerl = CDFerror(ex.GetCurrentStatus(), out text) ...
end try

> A legacy CDF function. While it is still available in V3.1, CDFgetStatusText is the preferred function for it.

36

4.2.9 CDFgetCacheSize

integer CDFgetCacheSize (¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
numBuffers as integer) ‘ out -- CDF’s cache buffers.

CDFgetCacheSize returns the number of cache buffers being used for the dotCDF file when a CDF is open. Refer to
the CDF User’s Guide for description of caching scheme used by the CDF library.

The arguments to CDFgetCacheSize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreateCDF (or CDFcreate) or CDFopen.

numBuffers The number of cache buffers.

4.2.9.1. Example(s)

The following example returns the cache buffers for the open CDF file.

dim id as long ¢ CDF identifier.

dim status as integer ‘ Returned status code.
dim numBuffers as integer ¢ CDF’s cache buffers.
try

status = CDFgetCacheSize (id, numBuffers)

catch ex as Exception

end try

4.2.10 CDFgetChecksum

integer CDFgetChecksum (‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
checksum as integer) ‘ out-- CDF’s

CDFgetChecksum returns the checksum mode of a CDF. The CDF checksum mode is described in Section 2.20.

The arguments to CDFgetChecksum are defined as follows:

37

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreateCDF (or CDFcreate) or CDFopen.

checksum The checksum mode (NO_CHECKSUM or MD5 CHECKSUM).

4.2.10.1. Example(s)

The following example returns the checksum code for the open CDF file.

dim id as long ¢ CDF identifier.

dim status as integer ‘ Returned status code.
dim checksum as integer ¢ CDF’s checksum.
try

status = CDFgetChecksum (id, checksum)

catch ex as Exception

end try

4.2.11 CDFgetCompression

integer CDFgetCompression (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
compressionType as integer, out -- CDF’s compression type.
compressionParms as integer(), out -- Compression parameters.
compressionPercentage as integer) out -- Compressed percentage.

CDFgetCompression gets the compression information of the CDF. It returns the compression type (method) and, if
compressed, the compression parameters and compression rate. CDF compression types/parameters are described in
Section 2.11. The compression percentage is the result of the compressed file size divided by its original, uncompressed
file size.’

The arguments to CDFgetCompression are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

% The compression ratio is (100 — compression percentage): the lower the compression percentage, the better the
compression ratio.

38

compressionType The type of the compression.
compressionParms The parameters of the compression.

compressionPercentage The compression rate.

4.2.11.1. Example(s)

The following example returns the compression information of the open CDF file.

dim id as long ¢ CDF identifier.

dim status as integer ‘ Returned status code.
dim compressType as integer CDF’s compression type.
Dim compressionParms() as integer Compression parameters.
dim compressionPercentage as integer Compression rate.

3

try
status = CDFgetCompression (id, compression, compressionParms, compressionPercentage)

catch ex as Exception

end try

4.2.12 CDFgetCompressionCacheSize

3

integer CDFgetCompressionCacheSize (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
numBuffers as integer) ‘ out-- CDF’s compressed cache buffers.

CDFgetCompressionCacheSize gets the number of cache buffers used for the compression scratch CDF file. Refer to
the CDF User’s Guide for description of caching scheme used by the CDF library.
The arguments to CDFgetCompressionCacheSize are defined as follows:

Id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numBuffers The number of cache buffers.

39

4.2.12.1. Example(s)

The following example returns the number of cache buffers used for the scratch file from the compressed CDF file.

dim id as long ¢ CDF identifier.

dim status as integer ‘ Returned status code.

dim numBuffers as integer ¢ Compression cache buffers.
try

status = CDFgetCompressionCacheSize (id, numBuffers)

catch ex as Exception

end try

4.2.13 CDFgetCompressionInfo

integer CDFgetCompressionInfo (
CDFname as string,

compType as integer,

cParms.as integer()

cSize as long.

uSize as long).

out -- Completion status code.
in -- CDF name.

out -- CDF compression type.
out -- Compression parameters.
out -- CDF compressed size.
out -- CDF uncompressed size.

CDFgetCompressionInfo returns the compression type/parameters of a CDF without having to open the CDF. This
refers to the compression of the CDF - not of any compressed variables.

The arguments to CDFgetCompressionInfo are defined as follows:

CDFname The pathname of a CDF file without the .cdf file extension.
compType The CDF compression type.

cParms The CDF compression parameters.

cSize The compressed CDF file size.

uSize The size of CDF when decompress the originally compressed CDF.

4.2.13.1. Example(s)

The following example returns the compression information from a “unopen” CDF named “MY_TEST.cdf”.

40

integer CDFgetCopyright (

3

Returned status code.
Compression type.
Compression parameters.

dim status as integer
dim compType as integer
dim cParms as integer()

3

3

Dim cSize as long ¢ Compressed file size.
Dim uSize as long ¢ Decompressed file size.
try

status = CDFgetCompressionInfo(*MY_TEST”, compType, cParms, cSize, uSize)

catch ex as Exception

end try

4.2.14 CDFgetCopyright

3

out -- Completion status code.

id as long, ‘ in-- CDF identifier.

copyright as string)

3

out -- Copyright notice.

CDFgetCopyright gets the Copyright notice in a CDF.

The arguments to CDFgetCopyright are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate

(or CDFcreateCDF) or CDFopenCDF.

copyright CDF Copyright.

4.2.14.1. Example(s)

The following example returns the Copyright in a CDF.

dim id as long ¢ CDF identifier.

dim status as integer ‘ Returned status code.
Dim copyright as string * CDEF’s copyright.

try

41

status = CDFgetCopyright (id, copyright)

catch ex as Exception

end try

4.2.15 CDFgetDecoding

3

integer CDFgetDecoding (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
decoding as integer) ‘ out -- CDF decoding.
CDFgetDecoding returns the decoding code for the data in a CDF. The decodings are described in Section 2.8.

The arguments to CDFgetDecoding are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

decoding The decoding of the CDF.

4.2.15.1. Example(s)

The following example returns the decoding for the CDF.

dim id as long CDF identifier.

dim status as integer ‘ Returned status code.
dim decoding as integer Decoding.

try

status = CDFgetDecoding(id, decoding)
catch ex as Exception
end try

4.2.16 CDFgetEncoding

4

3

integer CDFgetEncoding (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
encoding as integer) ¢ out -- CDF encoding.
CDFgetEncoding returns the data encoding used in a CDF. The encodings are described in Section 2.7.

The arguments to CDFgetEncoding are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

encoding The encoding of the CDF.

4.2.16.1. Example(s)

The following example returns the data encoding used for the given CDF.

dim id as long CDF identifier.

dim status as integer ‘ Returned status code.
dim encoding as integer ‘ Encoding.

try

status = CDFgetEncoding(id, encoding)

catch ex as Exception

end try

4.2.17 CDFgetFileBackward

integer CDFgetFileBackward() ‘ out — File Backward Mode.

CDFgetFileBackward returns the backward mode information dealing with the creation of a new CDF file. A mode of
value 1 indicates when a new CDF file is created, it will be a backward version of V2.7, not the current library version.

The arguments to CDFgetFileBackward are defined as follows:

N/A

43

4.2.17.1. Example(s)

In the following example, the CDF’s file backward mode is acquired.

dim id as long ¢ CDF identifier.

dim status as integer ‘ Returned status code.
dim mode as integer ¢ Backward mode.

try

mode = CDFgetFileBackward ()
if mode = 1 then

end if
catch ex as Exception

end try

4.2.18 CDFgetFormat

3

integer CDFgetFormat (out -- Completion status code.
id as long, ‘ in-- CDF identifier.

format as integer) ¢ out -- CDF format.
CDFgetFormat returns the file format, single or multi-file, of the CDF. The formats are described in Section 2.5.

The arguments to CDFgetFormat are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

format The format of the CDF.

4.2.18.1. Example(s)

The following example returns the file format of the CDF.

dim id as long CDF identifier.
dim status as integer ‘ Returned status code.

44

dim format as integer ¢ Format.

try
status = CDFgetFormat(id, format)
catch ex as Exception

end try

4.2.19 CDFgetLeapSecondLastUpdated

3

integer CDFgetLeapSecondLastUpdated (out -- Completion status code.
id as long, ‘ in-- CDF identifier.

lastUpdated as integer) ¢ out -- CDF format.

CDFgetLeapSecondLastUpdated returns the leap second last updated date from the CDF. This value indicates what/if
the leap second table this CDF is based on. It is of YYYYMMDD form. The value can also be negative 1 (-1), the field
not set (for older CDFs), or zero (0) if the leap second table is not being accessed. This field is only relevant to TT2000
data in the CDF.

The arguments to CDFgetLeapSecondLastUpdated are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

lastUpdated The date that the latest leap second was added to the leap second table.

4.2.19.1. Example(s)

The following example returns the date that the last leap second was added to the leap second table from the CDF.

dim id as long CDF identifier.

dim status as integer ‘ Returned status code.
dim lastUpdatedas integer ¢ Format.

try

status = CDFgetLeapSecondLastUpdated(id, lastUpdated)

catch ex as Exception

end try

45

4.2.20 CDFgetMajority

3

integer CDFgetMajority (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
majority as integer) ‘¢ out -- Variable majority.

CDFgetMajority returns the variable majority, row or column-major, of the CDF. The majorities are described in
Section 2.9.

The arguments to CDFgetMajority are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

majority The variable majority of the CDF.

4.2.20.1. Example(s)

The following example returns the majority of the CDF.

dim id as long CDF identifier.

dim status as integer ‘ Returned status code.
dim majority as integer ¢ Majority.

try

status = CDFgetMajority (id, majority)

catch ex as Exception

end try

4.2.21 CDFgetName

3

integer CDFgetName (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
name as string) ¢ out -- CDF name.

CDFgetName returns the file name of the specified CDF.

46

The arguments to CDFgetName are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

name The file name of the CDF.

4.2.21.1. Example(s)

The following example returns the name of the CDF.

dim id as long * CDF identifier.

dim status as integer ‘ Returned status code.
Dim name as string ¢ Name of the CDF.
try

status = CDFgetName (id, name)

catch ex as Exception

end try

4.2.22 CDFgetNegtoPosfp0Mode

integer CDFgetNegtoPosfpOMode (¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
negtoPosfp0 as integer) ¢ out-- -0.0 to 0.0 mode.

CDFgetNegtoPosfpOMode returns the —0.0 to 0.0 mode of the CDF. You can use CDFsetNegtoPosfp0 method to set
the mode. The —0.0 to 0.0 modes are described in Section 2.16.

The arguments to CDFgetNegtoPosfpOMode are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

negtoPosfp0 The —0.0 to 0.0 mode of the CDF.

4.2.22.1. Example(s)

47

The following example returns the —0.0 to 0.0 mode of the CDF.

dim id as long ¢ CDF identifier.

dim status as integer ‘ Returned status code.
Dim negtoPosfp0 as integer ¢ -0.0 to 0.0 mode.

try

status = CDFgetNegtoPosfp0Mode (id, negtoPosfp0)

catch ex as Exception

end try

4.2.23 CDFgetReadOnlyMode

integer CDFgetReadOnlyMode(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
readOnlyMode as integer) ¢ out-- CDF read-only mode.

CDFgetReadOnlyMode returns the read-only mode for a CDF. You can use CDFsetReadOnlyMode to set the mode of
readOnlyMode. The read-only modes are described in Section 2.14.
The arguments to CDFgetReadOnlyMode are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

readOnlyMode The read-only mode (READONLYon or READONLY off).

4.2.23.1. Example(s)

The following example returns the read-only mode for the given CDF.

dim id as long CDF identifier.

Dim status as integer

dim readMode as integer CDF read-only mode.
try

48

status = CDFgetReadOnlyMode (id, readMode)

catch ex as Exception

end try

4.2.24 CDFgetStageCacheSize

3

integer CDFgetStageCacheSize(out -- Completion status code.
id as long, ‘ in-- CDF identifier.
numBuffers as integer) ‘ out -- The stage cache size.

CDFgetStageCacheSize returns the number of cache buffers being used for the staging scratch file a CDF. Refer to the
CDF User’s Guide for the description of the caching scheme used by the CDF library.

The arguments to CDFgetStageCacheSize are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numBuffers The number of cache buffers.

4.2.24.1. Example(s)

The following example returns the number of cache buffers used in a CDF.

dim id as long CDF identifier.

Dim status as integer

dim numBuffers as integer ¢ The number of cache buffers.
try

status = CDFgetStageCacheSize (id, numBuffers)

catch ex as Exception

end try

49

4.2.25 CDFgetValidate

integer CDFgetValidate() ‘ out — CDF validation mode.

CDFgetValidate returns the data validation mode. This information reflects whether when a CDF is open, its certain
data fields are subjected to a validation process. 1 is returned if the data validation is to be performed, 0 otherwise.

The arguments to CDFgetVersion are defined as follows:

N/A

4.2.25.1. Example(s)

In the following example, it gets the data validation mode.

dim id as long ¢ CDF identifier.

dim status as integer ‘ Returned status code.
dim validate as integer ¢ Data validation flag.
try

validate = CDFgetValidate ()

catch ex as Exception

end try

4.2.26 CDFgetVersion

integer CDFgetVersion(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

version as integer, out -- CDF version.

release as integer, out -- CDF release.

increment as integer) out -- CDF increment.

CDFgetVersion returns the version/release information for a CDF file. This information reflects the CDF library that
was used to create the CDF file.

The arguments to CDFgetVersion are defined as follows:

50

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

version The CDF version number.
release The CDF release number.
increment The CDF increment number.

4.2.26.1. Example(s)

In the following example, a CDF’s version/release is acquired.

dim id as long ¢ CDF identifier.
dim status as integer ‘ Returned status code.
dim version as integer ¢ CDF version.

dim release as integer ¢ CDF release
dim increment as integer ¢ CDF increment.

try
status = CDFgetVersion (id, version, release, increment)

catch ex as Exception

end try

4.2.27 CDFgetzMode

integer CDFgetzMode(‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
zMode as integer) ‘ out-- CDF zMode.

CDFgetzMode returns the zMode for a CDF file. The zModes are described in Section 2.15.
The arguments to CDFgetzMode are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

zMode The CDF zMode.

51

4.2.27.1. Example(s)

In the following example, a CDF’s zMode is acquired.

dim id as long ¢ CDF identifier.

dim status as integer ‘ Returned status code.
dim zMode as integer * CDF zMode.

try

status = CDFgetzMode (id, zMode)

catch ex as Exception

end try

4.2.28 CDFinquire

integer CDFinquire(out -- Completion status code.

id as long, ¢ in-- CDF identifier

numDims as integer, out -- Number of dimensions, rVariables.
dimSizes as integer(), out -- Dimension sizes, rVariables.

encoding as integer, out -- Data encoding.

majority as integer, out -- Variable majority.

maxRec as integer, out -- CDF’s maximum record number, rVariables.
numVars as integer, out -- Number of rVariables in the CDF.

numAttrs as integer) out -- Number of attributes in the CDF.

CDFinquire returns the basic characteristics of a CDF. An application needs to know the number of rVariable
dimensions and their sizes before it can access rVariable data (since all rVariables’ dimension and dimension size are
the same). Knowing the variable majority can be used to optimize performance and is necessary to properly use the
variable hyper functions (for both rVariables and zVariables).

The arguments to CDFinquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

numDims The number of dimensions for the rVariables in the CDF.
dimSizes The dimension sizes of the rVariables in the CDF. dimSizes is a 1-dimensional array
containing one element per dimension. Each element of dimSizes receives the

corresponding dimension size. For 0-dimensional rVariables this argument is ignored (but
must be present).

52

id as long,
numDims as integer,
dimSizes as integer(),

encoding The encoding of the variable data and attribute entry data. The encodings are defined in
Section 2.7.

majority The majority of the variable data. The majorities are defined in Section 2.9.

maxRec The maximum record number written to an rVariable in the CDF. Note that the maximum
record number written is also kept separately for each rVariable in the CDF. The value of
maxRec is the largest of these. Some rVariables may have fewer records actually written.
Use CDFrVarMaxWrittenRecNum to inquire the maximum record written for an
individual rVariable.

numVars The number of rVariables in the CDF.

numaAttrs The number of attributes in the CDF.

4.2.28.1. Example(s)

The following example returns the basic information about a CDF.

dim id as long

dim status as integer

dim numDims as integer
Dim dimSizes() as integer
dim encoding as integer
dim majority as integer
dim maxRec as integer

dim numVars as integer
dim numAttrs as integer

try

status = CDFinquire (id, numDims, dimSizes, encoding, majority,

maxRec, numVars, numAttrs)

catch ex as Exception

end try

4.2.29 CDFinquireCDF

53

CDF identifier.

Returned status code.

Number of dimensions, rVariables.
Dimension sizes, rVariables

Data encoding.

Variable majority.

Maximum record number,
rVariables.

Number of rVariables in CDF.
Number of attributes in CDF.

integer CDFinquireCDF(‘ out -- Completion status code.

¢ in -- CDF identifier

out -- Number of dimensions for rVariables.
out -- Dimension sizes for rVariables.

encoding as integer,
majority as integer,
maxrRec as integer,
numrVars as integer,
maxzRec as integer,
numzVars as integer,
numAttrs as integer)

out -- Data encoding.

out -- Variable majority.

out -- Maximum record number among rVariables .
¢ out -- Number of rVariables in the CDF.

out -- Maximum record number among zVariables .
out -- Number of zVariables in the CDF.

out -- Number of attributes in the CDF.

CDFinquireCDF returns the basic characteristics of a CDF. This method expands the method CDFinquire by acquiring
extra information regarding the zVariables. Knowing the variable majority can be used to optimize performance and is
necessary to properly use the variable hyper-get/put functions.

The arguments to CDFinquireCDF are defined as follows:

id

numDims

dimSizes

encoding

majority

maxrRec

numrVars

maxzRec

numzVars

numAttrs

4.2.29.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The number of dimensions for the rVariables in the CDF. Note that all the rVariables’
dimensionality in the same CDF file must be the same.

The dimension sizes of the rVariables in the CDF (note that all the rVariables’ dimension
sizes in the same CDF file must be the same). dimSizes is a 1-dimensional array
containing one element per dimension. Each element of dimSizes receives the
corresponding dimension size. For 0-dimensional rVariables this argument is ignored (but
must be present).

The encoding of the variable data and attribute entry data. The encodings are defined in
Section 2.7.

The majority of the variable data. The majorities are defined in Section 2.9.

The maximum record number written to an rVariable in the CDF. Note that the maximum
record number written is also kept separately for each rVariable in the CDF. The value of
maxRec is the largest of these.

The number of rVariables in the CDF.

The maximum record number written to a zVariable in the CDF. Note that the maximum
record number written is also kept separately for each zVariable in the CDF. The value of
maxRec is the largest of these. Some zVariables may have fewer records than actually
written. Use CDFgetzVarMaxWrittenRecNum to inquire the actual number of records
written for an individual zVariable.

The number of zVariables in the CDF.

The number of attributes in the CDF.

The following example returns the basic information about a CDF.

54

CDF identifier.

Returned status code.

Number of dimensions, rVariables.
Dimension sizes, rVariables .

Data encoding.

Variable majority.

Maximum record number, rVariables.
Number of rVariables in CDF.
Maximum record number, zVariables.
Number of zVariables in CDF.
Number of attributes in CDF.

dim id as long

dim status as integer

dim numDims as integer
Dim dimSizes() as integer
dim encoding as integer
dim majority as integer
dim maxRec as integer
dim numrVars as integer
dim maxzRec as integer
dim numzVars as integer
dim numAttrs as integer

try
status = CDFinquireCDF (id, numDims, dimSizes, encoding, majority,
maxrRec, numrVars, maxzRec, numzVars, numAttrs)

catch ex as Exception

end try

4.2.30 CDFopen

integer CDFopen(‘ out -- Completion status code.
CDFname as string, ‘¢ in -- CDF file name.
id as long) ¢ out-- CDF identifier.

CDFopen, a legacy CDF function, opens an existing CDF. The CDF is initially opened with only read access. This
allows multiple applications to read the same CDF simultaneously. When an attempt to modify the CDF is made, it is
automatically closed and reopened with read/write access. (The method will fail if the application does not have or
cannot get write access to the CDF.)

The arguments to CDFopen are defined as follows:

CDFname The file name of the CDF to open. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id The identifier for the opened CDF. This identifier must be used in all subsequent operations
on the CDF.

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly
written to disk.

55

4.2.30.1. Example(s)

The following example will open a CDF named “NOAA1.cdf”.

dim id as long ¢ CDF identifier.

dim status as integer ‘ Returned status code.
Dim CDFname as string = "NOAAL1" ¢ file name of CDF.

try

status = CDFopen (CDFname, id)
catch ex as Exception

end try

4.2.31 CDFopenCDF

Integer CDFopenCDF(¢ out -- Completion status code.
CDFname as string, ‘¢ in -- CDF file name.
id as long) ¢ out-- CDF identifier.

CDFopenCDF opens an existing CDF. This method is identical to CDFopen, and the use of this method is strongly
encouraged over CDFopen as it might not be supported in the future. The CDF is initially opened with only read
access. This allows multiple applications to read the same CDF simultaneously. When an attempt to modify the CDF
is made, it is automatically closed and reopened with read/write access. The method will fail if the application does not
have or cannot get write access to the CDF.

The arguments to CDFopenCDF are defined as follows:

CDFname The file name of the CDF to open. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id The identifier for the opened CDF. This identifier must be used in all subsequent operations
on the CDF.

NOTE: CDFcloseCDF must be used to close the CDF before your application exits to ensure that the CDF will be
correctly written to disk.

56

4.2.31.1. Example(s)

The following example will open a CDF named “NOAA1.cdf”.

dim id as long ¢ CDF identifier.

dim status as integer ‘ Returned status code.
Dim CDFname as string = "NOAA1" ¢ file name of CDF.

try

status = CDFopenCDF (CDFname, id)

catch ex as Exception

end try

4.2.32 CDFselect

3

integer CDFselect(out -- Completion status code.
id as long) ‘ in-- CDF identifier.

CDFselect selects an opened CDF as the current CDF. Only one CDF is allowed to be current. To access data from a
CDF, that CDF must be selected as the current. This method is no longer needed as the methods involved CDF
operations always need the CDF identifier, as the first argument, so it can be set as current before other operations can
be applied.

The arguments to CDFselect are defined as follows:

id The identifier for the opened CDF. This identifier must be used in all subsequent operations
on the CDF.

NOTE: When a CDF is opened, it becomes the current. No CDF is current after CDFcloseCDF is called to close the
file.

4.2.32.1. Example(s)

The following example will select a CDF named “NOAA1.cdf” as the current CDF while another file “NOAA2.cdf” is
also opened.

dim id1 as long, id2 as long ¢ CDF identifier.

57

dim status as integer ‘ Returned status code.

Dim CDFnamel as string = "NOAA1" ¢ file name of CDF.
Dim CDFname?2 as string = "NOAA2" ¢ file name of CDF.
try

's:[z.i'tus = CDFopenCDF (CDFnamel, idl)
status = CDFopenCDF (CDFname2, id2)
status = CDFselect(id1)
status = CDFclose(id1)
status = CDFclose(id2)

catch ex as Exception

end try

4.2.33 CDFselectCDF

integer CDFselectCDF(¢ out -- Completion status code.
id as long) ‘ in-- CDF identifier.

CDFselectCDF selects an opened CDF as the current CDF. Only one CDF is allowed to be current. To access data from
a CDF, that CDF must be selected as the current. This method is no longer needed as the methods involved CDF
operations always need the CDF identifier, as the first argument, so it can be set as current before other operations can
be applied. This method is identical to CDFselect.

The arguments to CDFselectCDF are defined as follows:

id The identifier for the opened CDF. This identifier must be used in all subsequent operations
on the CDF.

NOTE: When a CDF is opened, it becomes the current. No CDF is current after CDFcloseCDF is called to close the
file.

4.2.33.1. Example(s)

The following example will select a CDF named “NOAA1.cdf” as the current CDF while another file “NOAA2.cdf” is
also opened.

dim id1 as long, i2 as long ¢ CDF identifier.

dim status as integer ‘ Returned status code.
Dim CDFnamel as string = "NOAA1" ¢ file name of CDF.
Dim CDFname?2 as string = "NOAA2" ¢ file name of CDF.

58

try
's:[z.i'tus = CDFopenCDF (CDFnamel, idl)
status = CDFopenCDF (CDFname2, id2)
status = CDFselectCDF(id1)
status = CDFclose(id1)
status = CDFclose(id2)

catch ex as Exception

end try

4.2.34 CDFsetCacheSize

integer CDFsetCacheSize (* out -- Completion status code.
id as long, ‘ in-- CDF identifier.
numBuffer as integer) ‘ in -- CDF’s cache buffers.

CDFsetCacheSize specifies the number of cache buffers being used for the dotCDF file when a CDF is open. Refer to
the CDF User’s Guide for the description of the cache scheme used by the CDF library.

The arguments to CDFsetCacheSize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

numBuffers The number of cache buffers.

4.2.34.1. Example(s)

The following example extends the number of cache buffers to 500 for the open CDF file. The default number is 300
for a single-file format CDF on Unix systems.

dim id as long ¢ CDF identifier.
dim status as integer ‘ Returned status code.
dim cacheBuffers as integer ¢ CDF’s cache buffers.

cacheBuffers = 500
try

status = CDFsetCacheSize (id, cacheBuffers)

59

catch ex as Exception

end try

4.2.35 CDFsetChecksum

integer CDFsetChecksum (out -- Completion status code.

id as long, ‘ in-- CDF identifier.

checksum as integer) ¢ in -- CDF’s checksum mode.
CDFsetChecksum specifies the checksum mode for the CDF. The CDF checksum mode is described in Section 2.20.

The arguments to CDFsetChecksum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

checksum The checksum mode (NO_CHECKSUM or MD5 CHECKSUM).

4.2.35.1. Example(s)

The following example turns off the checksum flag for the open CDF file..

dim id as long ¢ CDF identifier.
dim status as integer ‘ Returned status code.
dim checksum as integer ¢ CDF’s checksum.

checksum= NO_CHECKSUM
try

status = CDFsetChecksum (id, checksum)

catch ex as Exception

end try

4.2.36 CDFsetCompression

3

integer CDFsetCompression (out -- Completion status code.
id as long, ‘ in-- CDF identifier.

60

3

compressionType as integer,
CompressionParms as integer())

in -- CDF’s compression type.
in -- CDF’s compression parameters.

3

CDFsetCompression specifies the compression type and parameters for a CDF. This compression refers to the CDF,
not of any variables. The compressions are described in Section 2.11.

The arguments to CDFsetCompression are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

compressionType The compression type .

compressionParms The compression parameters.

4.2.36.1. Example(s)

The following example uses GZIP.6 to compress the CDF file.

dim id as long ¢ CDF identifier.

dim status as integer ‘ Returned status code.

dim compressionType as integer CDF’s compression type.

Dim compressionParms(1) as integer CDEF’s compression parameters.

3

compressionType = GZIP_ COMPRESSION
compressionParms(0) = 6

try
status = CDFsetCompression (id, compressionType, compressionParms) ...
catch ex as Exception

end try

4.2.37 CDFsetCompressionCacheSize

3

integer CDFsetCompressionCacheSize (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
numBuffers as integer) ‘ in -- CDF’s compressed cache buffers.

CDFsetCompressionCacheSize specifies the number of cache buffers used for the compression scratch CDF file. Refer
to the CDF User’s Guide for the description of the cache scheme used by the CDF library.

The arguments to CDFsetCompressionCacheSize are defined as follows:

61

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

compressionNumBuffers The number of cache buffers.

4.2.37.1. Example(s)

The following example extends the number of cache buffers used for the scratch file from the compressed CDF file to
100. The default cache buffers is 80 for Unix systems.

dim id as long ¢ CDF identifier.

dim status as integer ‘ Returned status code.

dim numBuffers as integer = 100 ¢ CDF’s compression cache buffers.
try

status = CDFsetCompressionCacheSize (id, numBuffers)

catch ex as Exception

end try

4.2.38 CDFsetDecoding

3

integer CDFsetDecoding (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
decoding as integer) ‘ in -- CDF decoding.
CDFsetDecoding sets the decoding of a CDF. The decodings are described in Section 2.8.

The arguments to CDFsetDecoding are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

decoding The decoding of a CDF.

4.2.38.1. Example(s)

The following example sets NETWORK DECODING to be the decoding scheme in the CDF.

62

dim id as long CDF identifier.
Dim status as integer ‘ Returned status code.
Dim decoding as integer Decoding.

decoding = NETWORK DECODING
try

status = CDFsetDecoding (id, decoding)

catch ex as Exception

end try

4.2.39 CDFsetEncoding

3

integer CDFsetEncoding (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
encoding as integer) ¢ in -- CDF encoding.

CDFsetEncoding specifies the data encoding of the CDF. A CDF’s encoding may not be changed after any variable
values have been written. The encodings are described in Section 2.7.
The arguments to CDFsetEncoding are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

encoding The encoding of the CDF.

4.2.39.1. Example(s)

The following example sets the encoding to HOST ENCODING for the CDF.

dim id as long CDF identifier.
Dim status as integer ‘ Returned status code.
Dim encoding as integer Encoding.

encoding = HOST _ENCODING
try

63

status = CDFsetEncoding(id, encoding)

catch ex as Exception

end try

4.2.40 CDFsetFileBackward

void CDFsetFileBackward(
mode as integer) ‘ in -- File backward Mode.

CDFsetFileBackward sets the backward mode. When the mode is set as FILEBACKWARDon, any new CDF files
created are of version 2.7, instead of the underlining library version. If mode FILEBACKWARDoff is used, the default
for creating new CDF files, the library version is the version of the file.

The arguments to CDFsetFileBackward are defined as follows:

mode The backward mode.

4.2.40.1. Example(s)

In the following example, it sets the file backward mode to FILEBACKWARDoff, which means that any files to be
created will be of version V3.*, the same as the library version.

try
CDFsetFileBackward (FILEBACKWARDofY)

catch ex as Exception

end try

4.2.41 CDFsetFormat

3

integer CDFsetFormat (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
format as integer) ¢ in -- CDF format.

64

CDFsetFormat specifies the file format, either single or multi-file format, of the CDF. A CDF’s format may not be
changed after any variable values have been written. The formats are described in Section 2.5.

The arguments to CDFsetFormat are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

format The file format of the CDF.

4.2.41.1. Example(s)

The following example sets the file format to MULTI_FILE for the CDF. The default is SINGLE FILE format.

dim id as long CDF identifier.
Dim status as integer ‘ Returned status code.
Dim format as integer ¢ Format.

format = MULTI_FILE
try

status = CDFsetFormat(id, format)

catch ex as Exception

end try

4.2.42 CDFsetLeapSecondLastUpdated

integer CDFsetLeapSecondLastUpdated (‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
lastUpdated as integer) ‘ in -- Leap second last updated date

CDFsetLeapSecondLastUpdated respecifies the leap second last updated date in the CDF. The value, in YYYYMMDD
form, indicates what/if the leap second table this CDF is based upon. The value is either a valid entry in the currently
used leap second table, or zero (0). Value zero means the CDF is not using any leap second table. This field is only
relevant to TT2000 data. Normally, this function is used for older CDFs that have not had the field set.

The arguments to CDFsetLeapSecondLastUpdated are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

lastUpdated The date the latest leap second was added to the leap second table.

65

4.2.42.1. Example(s)

The following example resets the leap second last updated date in the CDF. Likely, the file’s field was not set originally
(an older CDF).

dim id as long * CDF identifier.
dim status as integer ‘ Returned status code.
dim lastUpdated as integer ¢ Leap second last updated.

lastUpdated = 20150701
try

status = CDFsetLeapSecondLastUpdated (id, lastUpdated)

catch ex as Exception

end try

4.2.43 CDFsetMajority

3

integer CDFsetMajority (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
majority as integer) ‘ in -- CDF variable majority.

CDFsetMajority specifies the variable majority, either row or column-major, of the CDF. A CDF’s majority may not be
changed after any variable values have been written. The majorities are described in Section 2.9.

The arguments to CDFsetMajority are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

majority The variable majority of the CDF.

4.2.43.1. Example(s)

The following example sets the majority to COLUMN_ MAIJOR for the CDF. The default is ROW_MAJOR.

dim id as long CDF identifier.

66

Dim status as integer ‘ Returned status code.
Dim majority as integer ¢ Majority.

majority = COLUMN_MAJOR
try

status = CDFsetMajority (id, majority)

catch ex as Exception

end try

4.2.44 CDFsetNegtoPosfp0Mode

integer CDFsetNegtoPosfpOMode (‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
negtoPosfp0 as integer) “in-- -0.0 to 0.0 mode.

CDFsetNegtoPosfpOMode specifies the —0.0 to 0.0 mode of the CDF. The —0.0 to 0.0 modes are described in Section
2.16.

The arguments to CDFsetNegtoPosfpOMode are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

negtoPosfp0 The —0.0 to 0.0 mode of the CDF.

4.2.44.1. Example(s)

The following example sets the —0.0 to 0.0 mode to ON for the CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim negtoPosfp0 as integer ¢ -0.0 to 0.0 mode.

negtoPosfp0 = NEGtoPOS{pOon
try

status = CDFsetNegtoPosfp0Mode (id, negtoPosfp0)

catch ex as Exception

67

end try

4.2.45 CDFsetReadOnlyMode

integer CDFsetReadOnlyMode(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
readOnlyMode as integer) ‘ in-- CDF read-only mode.
CDFsetReadOnlyMode specifies the read-only mode for a CDF. The read-only modes are described in Section 2.14.

The arguments to CDFsetReadOnlyMode are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

readOnlyMode The read-only mode.

4.2.45.1. Example(s)

The following example sets the read-only mode to OFF for the CDF.

dim id as long * CDF identifier.
Dim readMode as integer CDF read-only mode.
Dim status as integer

readMode = READONLY off
try

status = CDFsetReadOnlyMode (id, readMode)

catch ex as Exception

end try

4.2.46 CDFsetStageCacheSize

integer CDFsetStageCacheSize(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
numBuffers as integer) ‘ in -- The stage cache size.

68

CDFsetStageCacheSize specifies the number of cache buffers being used for the staging scratch file a CDF. Refer to
the CDF User’s Guide for the description of the caching scheme used by the CDF library.

The arguments to CDFsetStageCacheSize are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numBuffers The number of cache buffers.

4.2.46.1. Example(s)

The following example sets the number of stage cache buffers to 10 for a CDF.

dim id as long CDF identifier.
Dim numBufffers as integer ¢ The number of cache buffers.
Dim status as integer

numBufffers = 10
try

status = CDFsetStageCacheSize (id, numBuffers)

catch ex as Exception

end try

4.2.47 CDFsetValidate

void CDFsetValidate(
mode as integer) ‘ in -- File Validation Mode.

CDFsetValidate sets the data validation mode. The validation mode dedicates whether certain data in an open CDF file
will be validated. This mode should be set before the any files are opened. Refer to Data Validation Section 2.21.

The arguments to CDFgetVersion are defined as follows:

mode The validation mode.

69

4.2.47.1. Example(s)

In the following example, it sets the validation mode to be on, so any following CDF files are subjected to the data
validation process when they are open.

try

C-I.).I.:setValidate (VALIDATEFILEon)
CE'l.t;)h ex as Exception

en'(.i.try

4.2.48 CDFsetzMode

integer CDFsetzMode(‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
zMode as integer) ¢ in -- CDF zMode.

CDFsetzMode specifies the zMode for a CDF file. The zModes are described in Section 2.15 and see the Concepts
chapter in the CDF User’s Guide for a more detailed information on zModes. zMode is used when dealing with a CDF
file that contains 1) rVariables, or 2) rVariables and zVariables. If you want to treat rVariables as zVariables, it’s
highly recommended to set the value of zZMode to zMODEon2.

The arguments to CDFsetzMode are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

zMode The CDF zMode.

4.2.48.1. Example(s)

In the following example, a CDF’s zMode is specified to zMODEon2: all rVariables are treated as zVariables with
NOVARY dimensions being eliminated.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim zMode as integer * CDF zMode.

zMode = zMODEon2
try

70

status = CDFsetzMode (id, zMode)

catch ex as Exception

end try

4.3 Variables

The methods in this section are all CDF variable-specific. A variable, either a rVariable or zVariable, is identified by
its unique name in a CDF or a variable number. Before you can perform any operation on a variable, the CDF in which
it resides in must be opened.

4.3.1 CDFcloserVar

3

integer CDFcloserVar(out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varNum as integer) ‘ in -- rVariable number.

CDFcloserVar closes the specified rVariable file from a multi-file format CDF. Note that rVariables in a single-file
CDF don’t need to be closed. The variable's cache buffers are flushed before the variable's open file is closed.
However, the CDF file is still open.

NOTE: For the multi-file CDF, you must close all open variable files to guarantee that all modifications you have
made will actually be written to the CDF's file(s). If your program exits, normally or otherwise, without a successful
call to CDFcloseCDF, the CDF's cache buffers are left unflushed.

The arguments to CDFcloserVar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The variable number for the open rVariable’s file. This identifier must have been initialized by a call
to CDFcreaterVar or CDFgetVarNum.

4.3.1.1. Example(s)

The following example will close an open rVariable file from a multi-file CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim varNum as integer ‘ rVariable number.

71

try

Vz-i.r.I;Ium = CDFgetVarNum (id, “VAR NAME1”)
'status = CDFcloserVar (id, varNum)
;:'éltch ex as Exception

end try

4.3.2 CDFclosezVar

3

integer CDFclosezVar(out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varNum as integer) ¢ in -- zVariable number.

CDFclosezVar closes the specified zVariable file from a multi-file format CDF. Note that zVariables in a single-file
CDF don’t need to be closed. The variable's cache buffers are flushed before the variable's open file is closed.
However, the CDF file is still open.

NOTE: For the multi-file CDF, you must close all open variable files to guarantee that all modifications you have
made will actually be written to the CDF's file(s). If your program exits, normally or otherwise, without a successful
call to CDFcloseCDF, the CDF's cache buffers are left unflushed.

The arguments to CDFclosezVar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The variable number for the open zVariable’s file. This identifier must have been initialized by a call
to CDFcreatezVar or CDFgetVarNum.

4.3.2.1. Example(s)

The following example will close an open zVariable file from a multi-file CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim varNum as integer ¢ zVariable number.

try

varNum = CDFgetVarNum (id, “VAR NAME1”)

72

status = CDFclosezVar (id, varNum)
catch ex as Exception

end try

4.3.3 CDFconfirmrVarExistence

3

integer CDFconfirmrVarExistence(out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varName as string) ‘ in -- rVariable name.

CDFconfirmrVarExistence confirms the existence of a rVariable with a given name in a CDF. If the rVariable does not
exist, an error code will be returned. No exception is thrown if the variable is not found.

The arguments to CDFconfirmrEntryExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName The rVariable name to check.

4.3.3.1. Example(s)

The following example checks the existence of rVariable “MY_ VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
try

status = CDFconfirmrVarExistence (id, “MY_VAR?”)
if status <> CDF_OK then UserStatusHandler (status)

catch ex as Exception
end try

4.3.4 CDFconfirmrVarPadValueExistence

73

3

integer CDFconfirmrVarPadValueExistence(out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varNum as integer) ‘ in -- rVariable number.

CDFconfirmrVarPadValueExistence confirms the existence of an explicitly specified pad value for the specified
rVariable in a CDF. If an explicit pad value has not been specified, the informational status code
NO PADVALUE SPECIFIED will be returned. No exception is thrown if the variable’s pad value is not defined.

The arguments to CDFconfirmrVarPadValueExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

4.3.4.1. Example(s)

The following example checks the existence of the pad value of rVariable “MY_ VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim varNum as integer ‘ rVariable number.

try
varNum = CDFgetVarNum(id, “MY_VAR”)
status = CDFconfirmrVarPadValueExistence (id, varNum)
if status <> NO_PADVALUE SPECIFIED then

end if

catch ex as Exception

end try

4.3.5 CDFconfirmzVarExistence

3

integer CDFconfirmzVarExistence(out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varName as string) ‘ in -- zVariable name.

74

CDFconfirmzVarExistence confirms the existence of a zVariable with a given name in a CDF. If the zVariable does
not exist, an error code will be returned. No exception is thrown if the variable is not found.

The arguments to CDFconfirmrEntryExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName The zVariable name to check.

4.3.5.1. Example(s)

The following example checks the existence of zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
try

status = CDFconfirmzVarExistence (id, “MY_VAR”)
if status <> CDF_OK then UserStatusHandler (status)
catch ex as Exception

end try

4.3.6 CDFconfirmzVarPadValueExistence

3

integer CDFconfirmzVarPadValueExistence(out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varNum as integer) ¢ in -- zVariable number.

CDFconfirmzVarPadValueExistence confirms the existence of an explicitly specified pad value for the specified
zVariable in a CDF. If an explicit pad value has not been specified, the informational status code
NO PADVALUE SPECIFIED will be returned. No exception is thrown if the variable’s pad value is not defined.

The arguments to CDFconfirmzVarPadValueExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

75

4.3.6.1. Example(s)

The following example checks the existence of the pad value of zVariable “MY_VAR” in a CDF.

dim id as long id ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim varNum as integer ¢ zVariable number.

try
varNum = CDFgetVarNum(id, “MY_VAR”)

status = CDFconfirmzVarPadValueExistence (id, varNum)
if status <> NO_PADVALUE_SPECIFIED then

end if

catch ex as Exception

end try

4.3.7 CDFcreaterVar

integer CDFcreaterVar(out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varName as string, ‘ in -- rVariable name.

dataType as integer, in -- Data type.

numElements as integer, in -- Number of elements (of the data type).
recVariance as integer, in -- Record variance.

dimVariances as integer(), in -- Dimension variances.

varNum as integer) out -- rVariable number.

CDFcreaterVar is used to create a new rVariable in a CDF. A variable (rVariable or rVariable) with the same name
must not already exist in the CDF.

The arguments to CDFcreaterVar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varName The name of the rVariable to create. This may be at most CDF_ VAR NAME LEN256
characters. Variable names are case-sensitive.

dataType The data type of the new rVariable. Specify one of the data types defined in Section 2.6.

76

numElements

The number of elements of the data type at each value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string (each
value consists of the entire string). For all other data types this must always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The rVariable's record variance. Specify one of the variances defined in Section 2.10.
The rVariable's dimension variances. Each element of dimVariances specifies the

corresponding dimension variance. For each dimension specify one of the variances
defined in Section 2.10. For 0-dimensional rVariables this argument is ignored (but must

The number assigned to the new rVariable. This number must be used in subsequent
CDF function calls when referring to this rVariable. An existing rVariable's number may

recVariance
dimVariances
be present).
varNum
be determined with the CDFgetVarNum function.
4.3.7.1. Example(s)

The following example will create several rVariables in a 2-dimensional CDF.

¢ CDF 1identifier.

dim id as long

Dim status as integer

Dim EPOCHrecVary as integer = VARY

Dim LATrecVary as integer = NOVARY

Dim LONrecVary as integer = NOVARY

Dim TMPrecVary as integer = VARY

Dim EPOCHdimVarys() as integer = {NOVARY,NOVARY}
Dim LATdimVarys() as integer = {VARY,VARY}
Dim LONdimVarys() as integer = {VARY,VARY}
Dim TMPdimVarys() as integer = {VARY,VARY}
Dim EPOCHvarNum as integer

Dim LATvarNum as integer

Dim LONvarNum as integer

Dim TMPvarNum as integer

try

Returned status code.
EPOCH record variance.
LAT record variance.

LON record variance.

TMP record variance.
EPOCH dimension variances.
LAT dimension variances.
LON dimension variances.
TMP dimension variances.
EPOCH rVariable number.
LAT rVariable number.
LON rVariable number.
TMP rVariable number.

status = CDFcreaterVar (id, "EPOCH", CDF_EPOCH, 1, EPOCHrecVary, _

EPOCHdimVarys, EPOCH varNum)

status = CDFcreaterVar (id, "LATITUDE", CDF_INT2, 1, LATrecVary, LATdimVarys, LATvarNum)
status = CDFcreaterVar (id, "INTITUDE", CDF_INT2, 1, LONrecVary, LONdimVarys, LONvarNum)
status = CDFcreaterVar (id, "TEMPERATURE", CDF_REALA4, 1, TMPrecVary, _

TMPdimVarys, TMPvarNum)

catch ex as Exception

end try

77

4.3.8 CDFcreatezVar

integer CDFcreatezVar(
id as long,

varName as string,
dataType as integer,
numElements as integer,
numDims as integer,
dimSizes as integer(),
recVariance as integer,
dimVariances as integer(),

out -- Completion status code.
in -- CDF identifier.

in -- zVariable name.
in -- Data type.

in -- Number of elements (of the data type).

in -- Number of dimensions.
in -- Dimension sizes

in -- Record variance.
in -- Dimension variances.

varNum as integer)

out -- zVariable number.

CDFcreatezVar is used to create a new zVariable in a CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDFcreatezVar are defined as follows:

id

varName

dataType

numElements

numDims

dimSizes

recVariance

dimVariances

varNum

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The name of the zVariable to create. This may be at most CDF_ VAR NAME LEN256
characters. Variable names are case-sensitive.

The data type of the new zVariable. Specify one of the data types defined in Section 2.6.

The number of elements of the data type at each value. For character data types
(CDF_CHAR and CDF _UCHAR), this is the number of characters in the string (each
value consists of the entire string). For all other data types this must always be one (1) -
multiple elements at each value are not allowed for non-character data types.

Number of dimensions the zVariable. This may be as few as zero (0) and at most
CDF_MAX DIMS.

The size of each dimension. Each element of dimSizes specifies the corresponding
dimension size. Each size must be greater then zero (0). For 0-dimensional zVariables this
argument is ignored (but must be present).

The zVariable's record variance. Specify one of the variances defined in Section 2.10.

The zVariable's dimension variances. Each element of dimVariances specifies the
corresponding dimension variance. For each dimension specify one of the variances
defined in Section 2.10. For 0-dimensional zVariables this argument is ignored (but
must be present).

The number assigned to the new zVariable. This number must be used in subsequent

CDF function calls when referring to this zVariable. An existing zVariable's number
may be determined with the CDFgetVarNum function.

78

4.3.8.1. Example(s)

The following example will create several zVariables in a CDF. In this case EPOCH is a 0-dimensional, LAT and

LON are 2-diemnational, and TMP is a 1-dimensional.

dim id as long

Dim status as integer

Dim EPOCHrecVary as integer = VARY

Dim LATrecVary as integer = NOVARY

Dim LONrecVary as integer = NOVARY

Dim TMPrecVary as integer = VARY

Dim EPOCHdimVarys() as integer = (NOVARY}
Dim LATdimVarys() as integer = {VARY,VARY}
Dim LONdimVarys() as integer = {VARY,VARY}
Dim TMPdimVarys() as integer = {VARY,VARY}
Dim EPOCHvarNum as integer

Dim LATvarNum as integer

Dim LONvarNum as integer

Dim TMPvarNum as integer

Dim EPOCHdimSizes() as integer = {3}

Dim LATLONdimSizes() as integer = {2,3}

Dim TMPdimSizes() as integer = {3}

try

CDF 1identifier.

Returned status code.
EPOCH record variance.
LAT record variance.

LON record variance.

TMP record variance.
EPOCH dimension variances.
LAT dimension variances.
LON dimension variances.
TMP dimension variances.
EPOCH zVariable number.
LAT zVariable number.
LON zVariable number.
TMP zVariable number.
EPOCH dimension sizes.
LAT/LON dimension sizes.
TMP dimension sizes.

status = CDFcreatezVar (id, "EPOCH", CDF_EPOCH, 1, 0, EPOCHdimSizes, EPOCHrecVary, _

EPOCHdimVarys, EPOCHvarNum)

status = CDFcreatezVar (id, "LATITUDE", CDF_INT2, 1,2, LATLONdimSizes,LATrecVary, _

LATdimVarys, LATvarNum)

status = CDFcreatezVar (id, "INTITUDE", CDF_INT2, 1,2, LATLONdimSizes, LONrecVary, _

LONdimVarys, LONvarNum)

status = CDFcreatezVar (id, "TEMPERATURE", CDF_REALA4, 1, 1, TMPdimSizes, TMPrecVary, _

TMPdimVarys, TMPvarNum)

catch ex as Exception

end try

4.3.9 CDFdeleterVar

integer CDFdeleterVar(
id as long,
varNum as integer)

CDFdeleterVar deletes the specified rVariable from a CDF.

The arguments to CDFdeleterVar are defined as follows:

79

out -- Completion status code.

¢ in -- CDF identifier.

in -- rVariable identifier.

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number to be deleted.

4.3.9.1. Example(s)

The following example deletes the rVariable named MY VAR in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim varNum as integer ‘ rVariable number.

try
varNum = CDFgetVarNum (id, “MY_VAR”)
status = CDFdeleterVar (id, varNum)

catch ex as Exception

end try

4.3.10 CDFdeleterVarRecords

integer CDFdeleterVarRecords(* out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- rVariable identifier.
startRec as integer, in -- Starting record number.
endRec as integer) in -- Ending record number.

CDFdeleterVarRecords deletes a range of data records from the specified rVariable in a CDF. If this is a variable with
sparse records, the remaining records after deletion will not be renumbered.’
The arguments to CDFdeleterVarRecords are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The identifier of the rVariable.

" Normal variables without sparse records have contiguous physical records. Once a section of the records get deleted,
the remaining ones automatically fill the gap.

80

startRec ~ The starting record number to delete.

endRec The ending record number to delete.

4.3.10.1. Example(s)

The following example deletes 11 records (from record numbered 11 to 21) from the rVariable “MY_VAR” in a CDF.

Note: The first record is numbered as 0.

dim id as long

Dim status as integer
Dim varNum as integer
Dim startRec as integer
Dim endRec as integer

try
varNum = CDFgetVarNum (id, “MY_VAR”)
startRec = 10

endRec = 20
status = CDFdeleterVarRecords (id, varNum, startRec, endRec)

catch ex as Exception

end try

4.3.11 CDFdeleterVarRecordsRenumber

integer CDFdeleterVarRecordsRenumber(
id as long,

varNum as integer,

startRec as integer,

endRec as integer)

¢ CDF identifier.

¢ Returned status code.

¢ rVariable number.

¢ Starting record number.
¢ Ending record number.

out -- Completion status code.
in -- CDF identifier.

in -- rVariable identifier.

in -- Starting record number.
in -- Ending record number.

CDFdeleterVarRecordsRenumber deletes a range of data records from the specified rVariable in a CDF. If this is a
variable with sparse records, the remaining records after deletion will be renumbered, just like non-sparse variable’s

records.

The arguments to CDFdeleterVarRecordsRenumber are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or

CDFcreateCDF) or CDFopenCDF.

81

varNum The identifier of the rVariable.
startRec ~ The starting record number to delete.

endRec The ending record number to delete.

4.3.11.1. Example(s)

The following example deletes 11 records (from record numbered 11 to 21) from the rVariable “MY_VAR” in a CDF.
Note: The first record is numbered as 0. If the last record number is 100, then after the deletion, the record will be 89.

dim id as long ¢ CDF identifier.

Dim status as integer ‘ Returned status code.
Dim varNum as integer ‘ rVariable number.

Dim startRec as integer Starting record number.
Dim endRec as integer Ending record number.

3

3

try
varNum = CDFgetVarNum (id, “MY_VAR”)
startRec = 10
endRec = 20
status = CDFdeleterVarRecordsRenumber (id, varNum, startRec, endRec)

catch ex as Exception

end try

4.3.12 CDFdeletezVar

integer CDFdeletezVar(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer) in -- zVariable identifier.
CDFdeletezVar deletes the specified zVariable from a CDF.

The arguments to CDFdeletezVar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number to be deleted.

82

4.3.12.1. Example(s)

The following example deletes the zVariable named MY VAR in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim varNum as integer ‘¢ zVariable number.

try
varNum = CDFgetVarNum (id, “MY_VAR”)
status = CDFdeletezVar (id, varNum)

catch ex as Exception

end try

4.3.13 CDFdeletezVarRecords

integer CDFdeletezVarRecords(‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- zVariable identifier.
startRec as integer, in -- Starting record number.
endRec as integer) in -- Ending record number.

CDFdeletezVarRecords deletes a range of data records from the specified zVariable in a CDF. If this is a variable with
sparse records, the remaining records after deletion will not be renumbered.
The arguments to CDFdeletezVarRecords are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The identifier of the zVariable.
startRec ~ The starting record number to delete.

endRec The ending record number to delete.

83

4.3.13.1. Example(s)

The following example deletes 11 records (from record numbered 11 to 21) from the zVariable “MY_VAR” in a CDF.
Note: The first record is numbered as 0.

dim id as long ¢ CDF identifier.

Dim status as integer ‘ Returned status code.
Dim varNum as integer zVariable number.
Dim startRec as integer Starting record number.
Dim endRec as integer Ending record number.

3
3

3

try
varNum = CDFgetVarNum (id, “MY_VAR”)
startRec = 10
endRec = 20
status = CDFdeletezVarRecords (id, varNum, startRec, endRec)

catch ex as Exception

end try

4.3.14 CDFdeletezVarRecordsRenumber

integer CDFdeletezVarRecordsRenumber(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- zVariable identifier.
startRec as integer, in -- Starting record number.
endRec as integer) in -- Ending record number.

CDFdeletezVarRecordsRenumber deletes a range of data records from the specified zVariable in a CDF. If this is a
variable with sparse records, the remaining records after deletion will be renumbered, just like non-sparse variable’s
records.

The arguments to CDFdeletezVarRecordsRenumber are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The identifier of the zVariable.
startRec ~ The starting record number to delete.

endRec The ending record number to delete.

84

4.3.14.1. Example(s)

The following example deletes 11 records (from record numbered 11 to 21) from the zVariable “MY_VAR” in a CDF.
Note: The first record is numbered as 0. If the last record number is 100, then after the deletion, the record will be 89.

dim id as long ¢ CDF identifier.

Dim status as integer ‘ Returned status code.
Dim varNum as integer zVariable number.
Dim startRec as integer Starting record number.
Dim endRec as integer Ending record number.

3
3

3

try
varNum = CDFgetVarNum (id, “MY_VAR”)
startRec = 10
endRec = 20
status = CDFdeletezVarRecordsRenumber (id, varNum, startRec, endRec)

catch ex as Exception

end try

4.3.15 CDFgetMaxWrittenRecNums

integer CDFgetMaxWrittenRecNums (‘ out -- Completion status code.

id as long, ‘ in-- CDF identifier.

rVarsMaxNum as integer, out -- Maximum record number among all rVariables.
zVarsMaxNum as integer) out -- Maximum record number among all zVariables.

CDFgetMaxWrittenRecNums returns the maximum written record number for the rVariables and zVariables in a CDF.
The maximum record number for rVariables or zVariables is one less than the maximum number of records among all
respective variables.

The arguments to CDFgetMaxWrittenRecNums are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

rVarsMaxNum The maximum record number among all rVariables.

zVarsMaxNum The maximum record number among all zVariables.

85

4.3.15.1. Example(s)

The following example returns the maximum written record numbers among all rVariables and zVariables of the CDF.

dim id as long
Dim status as integer

¢ CDF 1identifier.
¢ Returned status code.

Dim rVarsMaxNum as integer ¢ Maximum record number among all rVariables.
Dim zVarsMaxNum as integer ¢ Maximum record number among all zVariables.
try

status = CDFgetMaxWrittenRecNums (id, rVarsMaxNum, zVarsMaxNum)

catch ex as Exception

end try

4.3.16 CDFgetNumrVars

integer CDFgetNumrVars (

id as long,
numVars as integer)

3

out -- Completion status code.
¢ in -- CDF identifier.
¢ out -- Total number of rVariables.

CDFgetNumrVars returns the total number of rVariables in a CDF.

The arguments to CDFgetNumrVars are defined as follows:

id

numVars

4.3.16.1. Example(s)

The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The number of rVariables.

The following example returns the total number of rVariables in a CDF.

dim status as integer
dim id as long

¢ Returned status code.
¢ CDF identifier.

Dim numVars as integer ¢ Number of zVariables.

86

try
status = CDFgetNumrVars (id, numVars)

catch ex as Exception

end try

4.3.17 CDFgetNumzVars

3

integer CDFgetNumzVars (out -- Completion status code.

id as long, ‘ in-- CDF identifier.

numVars as integer) ‘ out -- Total number of zVariables.
CDFgetNumzVars returns the total number of zVariables in a CDF.

The arguments to CDFgetNumzVars are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numVars The number of zVariables.

4.3.17.1. Example(s)

The following example returns the total number of zVariables in a CDF.

dim status as integer ‘ Returned status code.
dim id as long CDF identifier.

Dim numVars as integer ¢ Number of zVariables.
try

status = CDFgetNumzVars (id, numVars)

catch ex as Exception

end try

87

4.3.18 CDFgetrVarAllocRecords

integer CDFgetrVarAllocRecords(‘ out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

numRecs as integer) out -- Allocated number of records.

3

CDFgetrVarAllocRecords returns the number of records allocated for the specified rVariable in a CDF. Refer to the
CDF User’s Guide for a description of allocating variable records in a single-file CDF.

The arguments to CDFgetrVarAllocRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

numRecs The number of allocated records.

4.3.18.1. Example(s)

The following example returns the number of allocated records for rVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.

Dim varNum as integer ‘ rVariable number.
Dim numRecs as integer ¢ The allocated records.
Dim status as integer

try
varNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFgetrVarAllocRecords (id, varNum, numRecs)

catch ex as Exception

end try

4.3.19 CDFgetrVarBlockingFactor

3

integer CDFgetrVarBlockingFactor(out -- Completion status code.

88

id as long, ‘ in-- CDF identifier.
varNum as integer, ‘ in -- Variable number.
bf as integer) out -- Blocking factor.

3

CDFgetrVarBlockingFactor returns the blocking factor for the specified rVariable in a CDF. Refer to the CDF User’s
Guide for a description of the blocking factor.

The arguments to CDFgetrVarBlockingFactor are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.
bf The blocking factor. A value of zero (o) indicates that the default blocking factor will be
used.

4.3.19.1. Example(s)

The following example returns the blocking factor for the rVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
Dim varNum as integer ‘ rVariable number.
Dim bf as integer ¢ The blocking factor.
Dim status as integer.

try
varNum = CDFgetVarNum (id, “MY_VAR?”)

status = CDFgetrVarBlockingFactor (id, varNum, bf) .
catch ex as Exception

end try

4.3.20 CDFgetrVarCacheSize

integer CDFgetrVarCacheSize(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
numBuffers as integer) out -- Number of cache buffers.

CDFgetrVarCacheSize returns the number of cache buffers being for the specified rVariable in a CDF. This operation
is not applicable to a single-file CDF. Refer to the CDF User’s Guide for a description of caching scheme used by the
CDF library.

89

The arguments to CDFgetrVarCacheSize are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

numBuffers The number of cache buffers.

4.3.20.1. Example(s)

The following example returns the number of cache buffers for rVariable “MY VAR” in a CDF.

dim id as long CDF identifier.

Dim varNum as integer ‘ rVariable number.

Dim numBuffers as integer ¢ The number of cache buffers.
dim status as integer

try
varNum = CDFgetVarNum (id, “MY_VAR?”)

status = CDFgetrVarCacheSize (id, varNum, numBuffers)

catch ex as Exception

end try

4.3.21 CDFgetrVarCompression

integer CDFgetrVarCompression(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
compType as integer, out -- Compression type.
cParms as integer(), out -- Compression parameters.
cPct as integer) out -- Compression percentage.

CDFgetrVarCompression returns the compression type/parameters and compression percentage of the specified
rVariable in a CDF. Refer to Section 2.11 for a description of the CDF supported compression types/parameters. The
compression percentage is the result of the compressed size from all variable records divided by its original,
uncompressed variable size.

The arguments to CDFgetrVarCompression are defined as follows:

90

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

compType The compression type.

cParms The compression parameters.

cPct The percentage of the uncompressed size of rVariable’s data values needed to store the

compressed values.

4.3.21.1. Example(s)

The following example returns the compression information for rVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.

Dim varNum as integer ‘ rVariable number.

Dim compType as integer The compression type.

Dim cParms(1) as integer The compression parameters.
Dim cPct as integer The compression percentage.

3
3

3

try

varNum = CDFgetVarNum (id, “MY_VAR?”)

status = CDFgetrVarCompression (id, varNum, compType, cParms, cPct)
catch ex as Exception

end try

4.3.22 CDFgetrVarData

integer CDFgetrVarData(‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varNum as integer, in -- Variable number.
recNum as integer, in -- Record number.
indices as integer(), in -- Dimension indices.
value as TYPE) ¢ out -- Data value.
* TYPE -- VB value/string type or object.

CDFgetrVarData returns a data value from the specified indices, the location of the element, in the given record of the
specified rVariable in a CDF.

The arguments to CDFgetrVarData are defined as follows:

91

id

varNum

recNum

indices

value

4.3.22.1. Example(s)

The identifier of the current CDF. This identifier must have been initialized by a call to

CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The rVariable number.

The record number.

The dimension indices within the record.

The data value.

The following example returns two data values, the first and the fifth element, in Record 0 from rVariable “MY_VAR?”,

a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF.

dim id as long
Dim varNum as integer
Dim recNum as integer

Dim indices(2) as integer
Dim valuel as double, value2 as double

try

varNum = CDFgetVarNum (id, “MY_VAR?”)

recNum = 0
indices(0) =0
indices(1) =0

status = CDFgetrVarData (id, varNum, recNum, indices, valuel)

indices(0) =1
indices(1) =1
object value2o

status = CDFgetrVarData (id, varNum, recNum, indices, value20)

value2 = value2o0

catch ex as Exception

end try

4.3.23 CDFgetrVarDataType

integer CDFgetrVarDataType(

id as long,

varNum as integer,

92

3

3

3

3

3

CDF identifier.
rVariable number.

The record number.
The dimension indices.
The data values.

out -- Completion status code.
‘ in -- CDF identifier.
in -- Variable number.

3

dataType as integer) out -- Data type.

CDFgetrVarDataType returns the data type of the specified rVariable in a CDF. Refer to Section 2.6 for a description
of the CDF data types.
The arguments to CDFgetrVarDataType are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

dataType The data type.

4.3.23.1. Example(s)

The following example returns the data type of rVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
Dim varNum as integer ‘ rVariable number.
Dim dataType as integer ¢ The data type.
dim status as integer

try

varNum = CDFgetVarNum (id, “MY_VAR?”)

status = CDFgetrVarDataType (id, varNum, dataType)
catch ex as Exception

end try

4.3.24 CDFgetrVarDimVariances

integer CDFgetrVarDimVariances(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
dimVarys as integer()) out -- Dimension variances.

CDFgetrVarDimVariances returns the dimension variances of the specified rVariable in a CDF. For 0-dimensional
rVariable, this operation is not applicable. The dimension variances are described in section 2.10.

The arguments to CDFgetrVarDimVariances are defined as follows:

93

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

dimVarys The dimension variances.

4.3.24.1. Example(s)

The following example returns the dimension variances of the 2-dimensional rVariable “MY_VAR” in a CDF.

dim id as long * CDF identifier.
Dim dimVarys(2) as integer ¢ The dimension variances.
try

status = CDFgetrVarDimVariances (id, CDFgetVarNum (id, “MY_VAR”), dimVarys)

catch ex as Exception

end try

4.3.25 CDFgetrVarlInfo

integer CDFgetrVarInfo(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
dataType as integer, out -- Data type.

numElems as integer, out -- Number of elements.
numDims as integer, out -- Number of dimensions.
dimSizes as integer()) out -- Dimension sizes.

CDFgetrVarlnfo returns the basic information about the specified rVariable in a CDF.
The arguments to CDFgetrVarInfo are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

94

dataType The data type of the variable.

numElems The number of elements for the data type of the variable.
numDims The number of dimensions.
dimSizes The dimension sizes.

4.3.25.1. Example(s)

The following example returns the basic information of rVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.

Dim dataType as integer ¢ The data type.

Dim numElems as integer The number of elements.
Dim numDims as integer The number of dimensions.
Dim dimSizes() as integer The dimension sizes.

dim status as integer

3
3

try

status = CDFgetrVarlnfo (id, CDFgetVarNum (id, “MY_VAR?”), dataType, numElems,
numDims, dimVarys)

catch ex as Exception

end try

4.3.26 CDFgetrVarMaxAllocRecNum

integer CDFgetrVarMaxAllocRecNum(¢ out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

maxRec as integer) out -- Maximum allocated record #.
CDFgetrVarMaxAllocRecNum returns the number of records allocated for the specified rVariable in a CDF.

The arguments to CDFgetrVarMaxAllocRecNum are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

95

varNum The rVariable number.

maxRec The number of records allocated.

4.3.26.1. Example(s)

The following example returns the maximum allocated record number for the rVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
Dim maxRec as integer ¢ The maximum record number.
Dim status as integer.

try
status = CDFgetrVarMaxAllocRecNum (id, CDFgetVarNum (id, “MY_VAR”), maxRec)

catch ex as Exception

end try

4.3.27 CDFgetrVarMaxWrittenRecNum

integer CDFgetrVarMaxWrittenRecNum (‘ out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

maxRec as integer) out -- Maximum written record number.
CDFgetrVarMax WrittenRecNum returns the maximum record number written for the specified rVariable in a CDF.

The arguments to CDFgetrVarMaxWrittenRecNum are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

maxRec The maximum written record number.

4.3.27.1. Example(s)

The following example returns the maximum record number written for the rVariable “MY_ VAR” in a CDF.

96

dim id as long CDF identifier.
Dim maxRec as integer ¢ The maximum record number.
Dim status as integer.

try
status = CDFgetrVarMaxWrittenRecNum (id, CDFgetVarNum (id, “MY_VAR”), maxRec)

catch ex as Exception

end try

4.3.28 CDFgetrVarName

integer CDFgetrVarName(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
varName as string) out -- Variable name.
CDFgetrVarName returns the name of the specified rVariable, by its number, in a CDF.

The arguments to CDFgetrVarName are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

varName The name of the variable.

4.3.28.1. Example(s)

The following example returns the name of the rVariable whose variable number is 1.

dim id as long CDF identifier.

Dim varNum as integer ‘ rVariable number.

Dim varName as string ¢ The name of the variable.
Dim status as integer.

varNum = 1
try

97

status = CDFgetrVarName (id, varNum, varName)

catch ex as Exception

end try

4.3.29 CDFgetrVarNumElements

integer CDFgetrVarNumElements(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
numElems as integer) out -- Number of elements.

CDFgetrVarNumElements returns the number of elements for each data value of the specified rVariable in a CDF. For
character data type (CDF_CHAR and CDF_UCHAR), the number of elements is the number of characters in the string.
For other data types, the number of elements will always be one (1).

The arguments to CDFgetrVarNumElements are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

numElems The number of elements.

4.3.29.1. Example(s)

The following example returns the number of elements for the data type from rVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
Dim numElems as integer ¢ The number of elements.
Dim status as integer.

try
status = CDFgetrVarNumElements (id, CDFgetVarNum (id, “MY_VAR”), numElems) ...
catch ex as Exception

end try

98

4.3.30 CDFgetrVarNumRecsWritten

integer CDFgetrVarNumRecsWritten(¢ out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

numRecs as integer) out -- Number of written records.

CDFgetrVarNumRecsWritten returns the number of records written for the specified rVariable in a CDF. This number
may not correspond to the maximum record written if the rVariable has sparse records.
The arguments to CDFgetrVarNumRecsWritten are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

numRecs The number of written records.

4.3.30.1. Example(s)

The following example returns the number of written records from rVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
Dim numRecs as integer ¢ The number of written records.
Dim status as integer.

try
status = CDFgetrVarNumRecsWritten (id, CDFgetVarNum (id, “MY_VAR”), numRecs)

catch ex as Exception

end try

4.3.31 CDFgetrVarPadValue

integer CDFgetrVarPadValue(‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varNum as integer, in -- Variable number.
value as TYPE) out -- Pad value.
* TYPE -- VB value/string type or object.

99

CDFgetrVarPadValue returns the pad value of the specified rVariable in a CDF. If a pad value has not been explicitly
specified for the rVariable through CDFsetrVarPadValue, the informational status code
NO_PADVALUE_SPECIFIED will be returned. Since a variable’s pad value is an optional, no exception is
thrown while trying to get its value if its value is not set. It’s recommended to check the returned status after the
method is called.

The arguments to CDFgetrVarPadValue are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

value The pad value.

4.3.31.1. Example(s)

The following example returns the pad value from rVariable “MY_ VAR”, a CDF_INT4 type variable, in a CDF.

dim id as long CDF identifier.
Dim padValue as integer ¢ The pad value.
Dim status as integer.

try
object padValueo
status = CDFgetrVarPadValue (id, CDFgetVarNum (id, “MY_VAR”), padValueo)
if status <> NO_PADVALUE_SPECIFIED then

. padValue = Ctype(padValueo, integer)
end if

catch ex as Exception

end try

4.3.32 CDFgetrVarRecordData

integer CDFgetrVarRecordData(‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varNum as integer, in -- Variable number.
dim recNum as integer, in -- Record number.
buffer as TYPE) ‘ out -- Record data.
* TYPE -- VB value/string type (likely
an array) or object.

100

CDFgetrVarRecordData returns an entire record at a given record number for the specified rVariable in a CDF. The
buffer should be large enough to hold the entire data values form the variable.

The arguments to CDFgetrVarRecordData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.
recNum The record number.
buffer The buffer holding the entire record data.

4.3.32.1. Example(s)

The following example will read two full records (record numbers 2 and 5) from rVariable “MY_VAR?”, a 2-dimension
(2 by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

dim id as long ¢ CDF identifier.

Dim varNum ¢ rVariable number.

Dim bufferl(,) as integer The data holding buffer — pre-allocation.
Dim buffer2(,) as integer ¢ The data holding buffer — API allocation.
Dim status as integer.

3

try
varNum = CDFgetVarNum (id, “MY_VAR?”)
status = CDFgetrVarRecordData (id, varNum, 2, buffer1)
dim buffer2o as object

status = CDFgetrVarRecordData (id, varNum, 5, buffer2o)
buffer2 = buffer2o

catch ex as Exception

end try

4.3.33 CDFgetrVarRecVariance

integer CDFgetrVarRecVariance(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
recVary as integer) out -- Record variance.

101

CDFgetrVarRecVariance returns the record variance of the specified rVariable in a CDF. The record variances are
described in Section 2.10.

The arguments to CDFgetrVarRecVariance are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

recVary The record variance.

4.3.33.1. Example(s)

The following example returns the record variance for the rVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
Dim recVary as integer ¢ The record variance.
.Dim status as integer

try
status = CDFgetrVarRecVariance (id, CDFgetVarNum (id, “MY_VAR?”), recVary) ...
catch ex as Exception

end try

4.3.34 CDFgetrVarReservePercent

integer CDFgetrVarReservePercent(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
percent as integer) out -- Reserve percentage.

CDFgetrVarReservePercent returns the compression reserve percentage being used for the specified rVariable in a
CDF. This operation only applies to compressed rVariables. Refer to the CDF User’s Guide for a description of the
reserve scheme used by the CDF library.

The arguments to CDFgetrVarReservePercent are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

102

ercent The reserve percentage.
p p g

4.3.34.1. Example(s)

The following example returns the compression reserve percentage from the compressed rVariable “MY_VAR” in a
CDF.

dim id as long CDF identifier.
Dim percent as integer ¢ The compression reserve percentage.
dim status as integer

try
status = CDFgetrVarReservePercent (id, CDFgetVarNum (id, “MY_VAR?”), percent)

catch ex as Exception

end try

4.3.35 CDFgetrVarsDimSizes

3

integer CDFgetrVarsDimSizes(out -- Completion status code.
id as long, ‘ in-- CDF identifier.
dimSizes as integer()) ¢ out -- Dimension sizes.

CDFgetrVarsDimSizes returns the size of each dimension for the rVariables in a CDF. (all rVariables have the same
dimensional sizes.) For 0-dimensional rVariables, this operation is not applicable.

The arguments to CDFgetrVarsDimSizes are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

dimSizes The dimension sizes. Each element of dimSizes receives the corresponding dimension size.

4.3.35.1. Example(s)

The following example returns the dimension sizes for rVariables in a CDF.

103

dim id as long * CDF identifier.
dim dimSizes() as integer ‘ Dimensional sizes.
Dim status as integer

Ary

status = CDFgetrVarsDimSizes (id, dimSizes)

catch ex as Exception

end try

4.3.36 CDFgetrVarSeqData

integer CDFgetrVarSeqData(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varNum as integer, in -- Variable number.
value as TYPE) ¢ out -- Data value.
* TYPE -- VB value/string type or object.

CDFgetrVarSeqData reads one value from the specified rVariable in a CDF at the current sequential value (position).
After the read, the current sequential value is automatically incremented to the next value. An error is returned if the
current sequential value is past the last record of the rVariable. Use CDFsetrVarSeqPos method to set the current
sequential value (position).

The arguments to CDFgetrVarSeqData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number from which to read data.

value The buffer to store the value.

4.3.36.1. Example(s)

The following example will read the first two data values from the beginning of record number 2 (from a 2-dimensional
rVariable whose data type is CDF _INT4) in a CDF.

dim id as long CDF identifier.

Dim varNum as integer ¢ The variable number from which to read data
Dim valuel as integer, value2 as integer The data value.

Dim indices(2) as integer The indices in a record.

Dim recNum as integer The record number.

Dim status as integer.

3
3

3

104

recNum = 2
indices(0) =0
indices(1) =0
try

status = CDFsetrVarSeqPos (id, varNum, recNum, indices)
status = CDFgetrVarSeqData (id, varNum, valuel)

object value2o

status = CDFgetrVarSeqData (id, varNum, value20)
value2 = value2o

catch ex as Exception

end try

4.3.37 CDFgetrVarSeqPos

integer CDFgetrVarSeqPos(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
recNum as integer, out -- Record number.

indices as integer()) out -- Indices in a record.

CDFgetrVarSeqPos returns the current sequential value (position) for sequential access for the specified rVariable in a
CDF. Note that a current sequential value is maintained for each rVariable individually. Use CDFsetrVarSeqPos
method to set the current sequential value.

The arguments to CDFgetrVarSeqPos are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.
recNum The rVariable record number.
indices The dimension indices. Each element of indices receives the corresponding dimension

index. For 0-dimensional rVariable, this argument is ignored, but must be presented.

4.3.37.1. Example(s)

The following example returns the location for the current sequential value (position), the record number and indices
within it, from a 2-dimensional rVariable named MY_VAR in a CDF.

dim id as long CDF identifier.
Dim recNum as integer ¢ The record number.

105

Dim indices() as integer ¢ The indices.
dim status as integer

try
status = CDFgetrVarSeqPos (id, CDFgetVarNum (id, “MY_VAR”), recNum, indices)
catch ex as Exception

end try

4.3.38 CDFgetrVarsMaxWrittenRecNum

integer CDFgetrVarsMaxWrittenRecNum(‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
recNum as integer) ‘ out -- Maximum record number.

CDFgetrVarsMaxWrittenRecNum returns the maximum record number among all of the rVariables in a CDF. Note
that this is not the number of written records but rather the maximum written record number (that is one less than the
number of records). A value of negative one (-1) indicates that rVariables contain no records. The maximum record
number for an individual rVariable may be acquired using the CDFgetrVarMax WrittenRecNum method call.

Suppose there are three rVariables in a CDF:Varl, Var2, and Var3. If Varl contains 15 records, Var2 contains 10
records, and Var3 contains 95 records, then the value returned from CDFgetrVarsMaxWrittenRecNum would be 95.

The arguments to CDFgetrVarsMaxWrittenRecNum are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

recNum The maximum written record number.

4.3.38.1. Example(s)

The following example returns the maximum record number for all of the rVariables in a CDF.

dim id as long CDF identifier.
Dim recNum as integer ¢ The maximum record number.
Dim status as integer.
try
status = CDFgetrVarsMaxWrittenRecNum (id, recNum)

catch ex as Exception

106

end try

4.3.39 CDFgetrVarsNumDims

3

integer CDFgetrVarsNumDims(out -- Completion status code.
id as long, ‘ in-- CDF identifier.
numDims as integer) ¢ out -- Number of dimensions.
CDFgetrVarsNumDims returns the number of dimensions (dimensionality) for the rVariables in a CDF.

The arguments to CDFgetrVarsNumDims are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numDims The number of dimensions.

4.3.39.1. Example(s)

The following example returns the number of dimensions for rVariables in a CDF.

dim id as long CDF identifier.
Dim numDims as integer ¢ The dimensionality of the variable.
Dim status as integer.

try
status = CDFgetrVarsNumDims (id, numDims)

catch ex as Exception

end try

4.3.40 CDFgetrVarSparseRecords

integer CDFgetrVarSparseRecords(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- The variable number.
sRecordsType as integer) out -- The sparse records type.

107

CDFgetrVarSparseRecords returns the sparse records type of the rVariable in a CDF. Refer to Section 2.12.1 for the
description of sparse records.

The arguments to CDFgetrVarSparseRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The variable number.

sRecordsType The sparse records type.

4.3.40.1. Example(s)

The following example returns the sparse records type of the rVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
Dim sRecordsType as integer ¢ The sparse records type.
Dim status as integer.

try
status = CDFgetrVarSparseRecords (id, CDFgetVarNum (id, “MY_VAR?”), sRecordsType) ...
catch ex as Exception

end try

4.3.41 CDFgetVarNum ®

integer CDFgetVarNum(‘ out-- Variable number.
id as long, ‘ in-- CDF identifier.
varName as string) ‘ in -- Variable name.

CDFgetVarNum returns the variable number for the given variable name (rVariable or zVariable). If the variable is
found, CDFgetVarNum returns its variable number - which will be equal to or greater than zero (0). If an error occurs
(e.g., the variable does not exist in the CDF), an error code (of type int) is returned, and an exception is thrown. Error
codes are less than zero (0). The returned variable number should be used in the functions of the same variable type,
rVariable or zVariable. If it is an rVariable, functions dealing with rVariables should be used. Similarly, functions for
zVariables should be used for zVariables.

The arguments to CDFgetVarNum are defined as follows:

¥ Since no two variables, either rVariable or zVariable, can have the same name, this function now returns the variable
number for the given rVariable or zVariable name (if the variable name exists in a CDF).

108

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varName The name of the variable to search. This may be at most CDF_ VAR NAME LEN256
characters. Variable names are case-sensitive.

CDFgetVarNum may be used as an embedded function call where an rVariable or zVariable number is needed.

4.3.41.1. Example(s)

In the following example CDFgetVarNum is used as an embedded function call when inquiring about a zVariable.

dim id as long id ¢ CDF identifier.

Dim status as integer Returned status code.

Dim varName as string Variable name.

Dim dataType as integer Data type of the zVariable.

Dim numElements as integer Number of elements (of the data type).
Dim numDims as integer Number of dimensions.

Dim dimSizes() as integer Dimension sizes.

Dim recVariance as integer Record variance.

Dim dimVariances() as integer Dimension variances.

try
status = CDFinquirezVar (id, CDFgetVarNum (id,"LATITUDE"), varName, dataType,
numElements, numDims, dimSizes , recVariance, dimVariances)

catch ex as Exception
end try

In this example the zVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDFgetVarNum would have returned an error code. Passing that error code to CDFinquirezVar as a zVariable
number would have resulted in CDFinquirezVar also returning an error code. Also note that the name written into
varName is already known (LATITUDE). In some cases the zVariable names will be unknown - CDFinquirezVar
would be used to determine them. CDFinquirezVar is described in Section 4.3.66.

4.3.42 CDFgetzVarAllocRecords

integer CDFgetzVarAllocRecords(¢ out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

numRecs as integer) out -- Allocated number of records.

109

CDFgetzVarAllocRecords returns the number of records allocated for the specified zVariable in a CDF. Refer to the
CDF User’s Guide for a description of allocating variable records in a single-file CDF.

The arguments to CDFgetzVarAllocRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numRecs The number of allocated records.

4.3.42.1. Example(s)

The following example returns the number of allocated records for zVariable “MY_ VAR” in a CDF.

dim id as long * CDF identifier.
Dim varNum as integer ‘¢ zVariable number.
Dim numRecs as integer ¢ The allocated records.

Dim status as integer.
try

varNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFgetzVarAllocRecords (id, varNum, numRecs)
catch ex as Exception

end try

4.3.43 CDFgetzVarBlockingFactor

integer CDFgetzVarBlockingFactor(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

bf as integer) out -- Blocking factor.

CDFgetzVarBlockingFactor returns the blocking factor for the specified zVariable in a CDF. Refer to the CDF User’s
Guide for a description of the blocking factor.
The arguments to CDFgetzVarBlockingFactor are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

110

varNum The zVariable number.

bf The blocking factor. A value of zero (o) indicates that the default blocking factor will be
used.

4.3.43.1. Example(s)

The following example returns the blocking factor for the zVariable “MY_VAR” in a CDF.

dim id as long ’ CDF identifier.
Dim varNum as integer ¢ zVariable number.
Dim bf as integer ¢ The blocking factor.
dim status as integer

try
varNum = CDFgetVarNum (id, “MY_VAR?”)

status = CDFgetzVarBlockingFactor (id, varNum, bf) .
catch ex as Exception

end try

4.3.44 CDFgetzVarCacheSize

integer CDFgetzVarCacheSize(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
numBuffers as integer) out -- Number of cache

CDFgetzVarCacheSize returns the number of cache buffers being for the specified zVariable in a CDF. This operation
is not applicable to a single-file CDF. Refer to the CDF User’s Guide for a description of caching scheme used by the
CDF library.

The arguments to CDFgetzVarCacheSize are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numBuffers The number of cache buffers.

111

4.3.44.1. Example(s)

The following example returns the number of cache buffers for zVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
Dim varNum as integer ¢ zVariable number.
Dim numBuffers as integer ¢ The number of cache buffers.

Dim status as integer.
try
varNum = CDFgetVarNum (id, “MY_VAR?”)

status = CDFgetzVarCacheSize (id, varNum, numBuffers)

catch ex as Exception

end try

4.3.45 CDFgetzVarCompression

integer CDFgetzVarCompression(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
compType as integer, out -- Compression type.
cParms as integer(), out -- Compression parameters.
cPct as integer) out -- Compression percentage.

CDFgetzVarCompression returns the compression type/parameters and compression percentage of the specified
zVariable in a CDF. Refer to Section 2.11 for a description of the CDF supported compression types/parameters. The
compression percentage is the result of the compressed size from all variable records divided by its original,
uncompressed variable size.

The arguments to CDFgetzVarCompression are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

compType The compression type.

cParms The compression parameters.

cPct The percentage of the uncompressed size of zVariable’s data values needed to store the

compressed values.

112

4.3.45.1. Example(s)

The following example returns the compression information for zVariable “MY_VAR” in a CDF.

dim id as long * CDF identifier.

Dim varNum as integer ¢ zVariable number.

Dim compType as integer ¢ The compression type.

Dim cParms() as integer ¢ The compression parameters.
Dim cPct as integer ¢ The compression percentage.

Dim status as integer.
try
varNum = CDFgetVarNum (id, “MY_VAR”)
status = CDFgetzVarCompression (id, varNum, compType, cParms, cPct)

catch ex as Exception

end try

4.3.46 CDFgetzVarData

integer CDFgetzVarData(‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varNum as integer, in -- Variable number.
dim recNum as integer, in -- Record number.
indices as integer(), in -- Dimension indices.
value as TYPE) ¢ out -- Data value.
* TYPE -- VB value/string type or object.

CDFgetzVarData returns a data value from the specified indices, the location of the element, in the given record of the
specified zVariable in a CDF.
The arguments to CDFgetzVarData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

recNum The record number.

indices The dimension indices within the record.
value The data value.

113

4.3.46.1. Example(s)

The following example returns two data values, the first and the fifth element, in Record 0 from zVariable
“MY_VAR?”, a 2-dimensional (2 by 3) CDF _DOUBLE type variable, in a row-major CDF.

dim id as long CDF identifier.

Dim varNum as integer zVariable number.
Dim recNum as integer The record number.
Dim indices(2) as integer The dimension indices.
Dim valuel as double, value2 as double The data values.

try
varNum = CDFgetVarNum (id, “MY_VAR?”)
recNum =0
indices(0) =0
indices(1) =0
status = CDFgetzVarData (id, varNum, recNum, indices, valuel)
indices(0) =1
indices(1) =1
object value2o
status = CDFgetzVarData (id, varNum, recNum, indices, value20)
value2 = value2o

catch ex as Exception

end try

4.3.47 CDFgetzVarDataType

integer CDFgetzVarDataType(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

in -- Variable number.

out -- Data type.

varNum as integer,
dataType as integer)

CDFgetzVarDataType returns the data type of the specified zVariable in a CDF. Refer to Section 2.6 for a description
of the CDF data types.
The arguments to CDFgetzVarDataType are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

114

varNum The zVariable number.

dataType The data type.

4.3.47.1. Example(s)

The following example returns the data type of zVariable “MY_ VAR” ina CDF.

dim id as long CDF identifier.
Dim varNum as integer ¢ zVariable number.
Dim dataType as integer ¢ The data type.
Dim status as integer.

try

varNum = CDFgetVarNum (id, “MY_VAR?”)

status = CDFgetzVarDataType (id, varNum, dataType)
catch ex as Exception

end try

4.3.48 CDFgetzVarDimSizes

integer CDFgetzVarDimSizes(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
dimSizes as integer) out -- Dimension sizes.

CDFgetzVarDimSizes returns the size of each dimension for the specified zVariable in a CDF. For 0-dimensional
zVariables, this operation is not applicable.
The arguments to CDFgetzVarDimSizes are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number

dimSizes The dimension sizes. Each element of dimSizes receives the corresponding dimension size.

115

4.3.48.1. Example(s)

The following example returns the dimension sizes for zVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
dim dimSizes() as integer ‘ Dimensional sizes.
Dim status as integer

Ary

status = CDFgetzVarDimSizes (id, CDFgetVarNum (id, “MY_VAR?”), dimSizes)

catch ex as Exception

end try

4.3.49 CDFgetzVarDimVariances

integer CDFgetzVarDimVariances(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
dimVarys as integer()) out -- Dimension variances.

CDFgetzVarDimVariances returns the dimension variances of the specified zVariable in a CDF. For 0-dimensional
zVariable, this operation is not applicable. The dimension variances are described in section 2.10.
The arguments to CDFgetzVarDimVariances are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

dimVarys The dimension variances.

4.3.49.1. Example(s)

The following example returns the dimension variances of the 2-dimensional zVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
Dim dimVarys() as integer ¢ The dimension variances.

116

Dim status as integer.
try

status = CDFgetzVarDimVariances (id, CDFgetVarNum (id, “MY_VAR”), dimVarys)

catch ex as Exception

end try

4.3.50 CDFgetzVarlInfo

integer CDFgetzVarInfo(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
dataType as integer, out -- Data type.

numElems as integer, out -- Number of elements.
numDims as integer, out -- Number of dimensions.
dimSizes as integer()) out -- Dimension sizes.

CDFgetzVarlnfo returns the basic information about the specified zVariable in a CDF.

The arguments to CDFgetzVarlnfo are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

dataType The data type of the variable.

numElems The number of elements for the data type of the variable.
numDims The number of dimensions.

dimSizes The dimension sizes.

4.3.50.1. Example(s)

The following example returns the basic information of zVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
Dim dataType as integer ¢ The data type.

117

Dim numElems as integer ¢ The number of elements.
Dim numDims as integer ¢ The number of dimensions.
Dim dimSizes() as integer ¢ The dimension sizes.

Dim status as integer.

try

status = CDFgetzVarlnfo (id, CDFgetVarNum (id, “MY_VAR?”), dataType, numElems,
numDims, dimVarys)

catch ex as Exception

end try

4.3.51 CDFgetzVarMaxAllocRecNum

integer CDFgetzVarMaxAllocRecNum(‘ out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

maxRec as integer) out -- Maximum allocated record #.
CDFgetzVarMaxAllocRecNum returns the number of records allocated for the specified zVariable in a CDF.

The arguments to CDFgetzVarMaxAllocRecNum are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

maxRec The number of records allocated.

4.3.51.1. Example(s)

The following example returns the maximum allocated record number for the zVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
Dim maxRec as integer ¢ The maximum record number.
dim status as integer

try

status = CDFgetzVarMaxAllocRecNum (id, CDFgetVarNum (id, “MY_VAR”), maxRec)

118

catch ex as Exception

end try

4.3.52 CDFgetzVarMaxWrittenRecNum

integer CDFgetzVarMaxWrittenRecNum (¢ out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

maxRec as integer) out -- Maximum written record number.
CDFgetzVarMax WrittenRecNum returns the maximum record number written for the specified zVariable in a CDF.

The arguments to CDFgetzVarMaxWrittenRecNum are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

maxRec The maximum written record number.

4.3.52.1. Example(s)

The following example returns the maximum record number written for the zVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
Dim maxRec as integer ¢ The maximum record number.
Dim status as integer

try
status = CDFgetzVarMaxWrittenRecNum (id, CDFgetVarNum (id, “MY_VAR”), maxRec)

catch ex as Exception

end try

119

4.3.53 CDFgetzVarName

integer CDFgetzVarName(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
varName as string) out -- Variable name.
CDFgetzVarName returns the name of the specified zVariable, by its number, in a CDF.

The arguments to CDFgetzVarName are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

varName The name of the variable.

4.3.53.1. Example(s)

The following example returns the name of the zVariable whose variable number is 1.

dim id as long CDF identifier.

Dim varNum as integer ¢ zVariable number.

Dim varName as string ¢ The name of the variable.
Dim status as integer.

varNum = 1
try

status = CDFgetzVarName (id, varNum, varName)

catch ex as Exception

end try

4.3.54 CDFgetzVarNumDims

integer CDFgetzVarNumDims(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
numDims as integer) out -- Number of dimensions.

120

CDFgetzVarNumDims returns the number of dimensions (dimensionality) for the specified zVariable in a CDF.
The arguments to CDFgetzVarNumDims are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number

numDims The number of dimensions.

4.3.54.1. Example(s)

The following example returns the number of dimensions for zVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
Dim numDims as integer ¢ The dimensionality of the variable.
Dim status as integer.

try
status = CDFgetzVarNumDims (id, CDFgetVarNum (id, “MY_VAR”), numDims)

catch ex as Exception

end try

4.3.55 CDFgetzVarNumElements

integer CDFgetzVarNumElements(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
numElems as integer) out -- Number of elements.

CDFgetzVarNumElements returns the number of elements for each data value of the specified zVariable in a CDF. For
character data type (CDF_CHAR and CDF_UCHAR), the number of elements is the number of characters in the string.
For other data types, the number of elements will always be one (1).

The arguments to CDFgetzVarNumElements are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

121

numElems The number of elements.

4.3.55.1. Example(s)

The following example returns the number of elements for the data type from zVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
dim numFElems as integer ¢ The number of elements.
Dim status as integer.

try
status = CDFgetzVarNumElements (id, CDFgetVarNum (id, “MY_VAR?”), numElems) ...
catch ex as Exception

end try

4.3.56 CDFgetzVarNumRecsWritten

integer CDFgetzVarNumRecsWritten(‘ out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

numRecs as integer) out -- Number of written records.

CDFgetzVarNumRecsWritten returns the number of records written for the specified zVariable in a CDF. This number
may not correspond to the maximum record written if the zVariable has sparse records.

The arguments to CDFgetzVarNumRecsWritten are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numRecs The number of written records.

4.3.56.1. Example(s)

The following example returns the number of written records from zVariable “MY_VAR” in a CDF.

122

dim id as long CDF identifier.
Dim numRecs as integer ¢ The number of written records.
Dim status as integer.

try
status = CDFgetzVarNumRecsWritten (id, CDFgetVarNum (id, “MY_VAR”), numRecs)

catch ex as Exception

end try

4.3.57 CDFgetzVarPadValue

integer CDFgetzVarPadValue(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varNum as integer, in -- Variable number.
value as TYPE) out -- Pad value.
* TYPE -- VB value/string type or object

CDFgetzVarPadValue returns the pad value of the specified zVariable in a CDF. If a pad value has not been explicitly
specified for the zVariable through CDFsetzVarPadValue, the informational status code
NO_PADVALUE_SPECIFIED will be returned. Since a variable’s pad value is an optional, no exception is
thrown while trying to get its value if its value is not set. It’s recommended to check the returned status after the
method is called.

The arguments to CDFgetzVarPadValue are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

value The pad value.

4.3.57.1. Example(s)

The following example returns the pad value from zVariable “MY_VAR?”, a CDF_INT4 type variable, in a CDF.

dim id as long CDF identifier.
Dim padValue as integer ¢ The pad value.
Dim status as integer.

123

try

dim padValueo as object
status = CDFgetzVarPadValue (id, CDFgetVarNum (id, “MY_VAR?”), padValueo)
if status <> NO_PADVALUE_SPECIFIED then
. padValue = Ctype(padValueo, integer)
end if

catch ex as Exception

end try

4.3.58 CDFgetzVarRecordData

integer CDFgetzVarRecordData(‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varNum as integer, in -- Variable number.
dim recNum as integer, in -- Record number.
buffer as TYPE) ¢ out -- Record data.
* TYPE -- VB value/string type (likely an
array) or object

CDFgetzVarRecordData returns an entire record at a given record number for the specified zVariable in a CDF. The
buffer should be large enough to hold the entire data values form the variable.
The arguments to CDFgetzVarRecordData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
recNum The record number.
buffer The buffer holding the entire record data.

4.3.58.1. Example(s)

The following example will read two full records (record numbers 2 and 5) from zVariable “MY_VAR?”, a 2-dimension
(2 by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

dim id as long CDF identifier.
Dim varNum as integer ‘ zVariable number.

124

Dim bufferl(2,3) as integer ¢ The data holding buffer — pre-allocation.
Dim buffer2 as object ¢ The data holding buffer — API allocation.

Dim status as integer.

try
varNum = CDFgetVarNum (id, “MY_VAR?”)
status = CDFgetzVarRecordData (id, varNum, 2, buffer])
status = CDFgetzVarRecordData (id, varNum, 5, buffer2)

catch ex as Exception

end try

4.3.59 CDFgetzVarRecVariance

integer CDFgetzVarRecVariance(
id as long,

varNum as integer,

recVary as integer)

CDFgetzVarRecVariance returns the record variance of the specified zVariable
described in Section 2.10.

The arguments to CDFgetzVarRecVariance are defined as follows:

out -- Completion status code.
in -- CDF identifier.

in -- Variable number.

out -- Record variance.

in a CDF. The record variances are

id The identifier of the current CDF. This identifier must have been initialized by a call to

CDFcreate (or CDFcreateCDF) or CDFopenCDF.
varNum The zVariable number.

recVary The record variance.

4.3.59.1. Example(s)

The following example returns the record variance for the zVariable “MY_VAR” in a CDF.

dim id as long
Dim recVary as integer
dim status as integer

try

¢ CDF identifier.
¢ The record variance.

status = CDFgetzVarRecVariance (id, CDFgetVarNum (id, “MY_VAR”), recVary) ...

125

catch ex as Exception

end try

4.3.60 CDFgetzVarReservePercent

integer CDFgetzVarReservePercent(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
percent as integer) out -- Reserve percentage.

CDFgetzVarReservePercent returns the compression reserve percentage being used for the specified zVariable in a
CDF. This operation only applies to compressed zVariables. Refer to the CDF User’s Guide for a description of the
reserve scheme used by the CDF library.

The arguments to CDFgetzVarReservePercent are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

percent The reserve percentage.

4.3.60.1. Example(s)

The following example returns the compression reserve percentage from the compressed zVariable “MY_VAR” in a
CDF.

dim id as long CDF identifier.
Dim percent as integer ¢ The compression reserve percentage.
Dim status as integer.

try
status = CDFgetzVarReservePercent (id, CDFgetVarNum (id, “MY_VAR?), percent)

catch ex as Exception

end try

126

4.3.61 CDFgetzVarSeqData

integer CDFgetzVarSeqData(‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varNum as integer, in -- Variable number.
value as TYPE) ¢ out -- Data value.
* TYPE -- VB value/string type or object

CDFgetzVarSeqData reads one value from the specified zVariable in a CDF at the current sequential value (position).
After the read, the current sequential value is automatically incremented to the next value. An error is returned if the
current sequential value is past the last record of the zVariable. Use CDFsetzVarSeqPos method to set the current
sequential value (position).

The arguments to CDFgetzVarSeqData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number from which to read data.

value The buffer to store the value.

4.3.61.1. Example(s)

The following example will read the first two data values from the beginning of record number 2 (from a 2-dimensional
zVariable whose data type is CDF_INT4) in a CDF.

dim id as long CDF identifier.

Dim varNum as integer ¢ The variable number from which to read data
Dim valuel as integer, value2 as integer The data value.

Dim indices(2) as integer The indices in a record.

Dim recNum as integer The record number.

Dim status as integer.

3
3

3

recNum = 2

indices(0) =0

indices(1) =0

try
status = CDFsetzVarSeqPos (id, varNum, recNum, indices)
status = CDFgetzVarSeqData (id, varNum, valuel)
dim value2o as object

status = CDFgetzVarSeqData (id, varNum, value20)
value2 = value2o

catch ex as Exception

end try

127

4.3.62 CDFgetzVarSeqPos

integer CDFgetzVarSeqPos(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
recNum as integer, out -- Record number.

indices as integer()) out -- Indices in a record.

CDFgetzVarSeqPos returns the current sequential value (position) for sequential access for the specified zVariable in a
CDF. Note that a current sequential value is maintained for each zVariable individually. Use CDFsetzVarSeqPos
method to set the current sequential value.

The arguments to CDFgetzVarSeqPos are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
recNum The zVariable record number.
indices The dimension indices. Each element of indices receives the corresponding dimension

index. For 0-dimensional zVariable, this argument is ignored, but must be presented.

4.3.62.1. Example(s)

The following example returns the location for the current sequential value (position), the record number and indices
within it, from a 2-dimensional zVariable named MY VAR in a CDF.

dim id as long CDF identifier.
Dim recNum as integer ¢ The record number.
Dim indices() as integer ¢ The indices.

Dim status as integer.
try

”s.t'atus = CDFgetzVarSeqPos (id, CDFgetVarNum (id, “MY_VAR”), recNum, indices)
;:'éltch ex as Exception

end try

4.3.63 CDFgetzVarsMaxWrittenRecNum

128

integer CDFgetzVarsMaxWrittenRecNum(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
recNum as integer) ‘ out -- Maximum record number.

CDFgetzVarsMaxWrittenRecNum returns the maximum record number among all of the zVariables in a CDF. Note
that this is not the number of written records but rather the maximum written record number (that is one less than the
number of records). A value of negative one (-1) indicates that zVariables contain no records. The maximum record
number for an individual zVariable may be acquired using the CDFgetzVarMaxWrittenRecNum method call.

Suppose there are three zVariables in a CDF:Varl, Var2, and Var3. If Varl contains 15 records, Var2 contains 10
records, and Var3 contains 95 records, then the value returned from CDFgetzVarsMaxWrittenRecNum would be 95.

The arguments to CDFgetzVarsMaxWrittenRecNum are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

recNum The maximum written record number.

4.3.63.1. Example(s)

The following example returns the maximum record number for all of the zVariables in a CDF.

dim id as long CDF identifier.
Dim recNum as integer ¢ The maximum record number.
dim status as integer

try
status = CDFgetzVarsMax WrittenRecNum (id, recNum)

catch ex as Exception

end try

4.3.64 CDFgetzVarSparseRecords

integer CDFgetzVarSparseRecords(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- The variable number.
sRecordsType as integer) out -- The sparse records type.

CDFgetzVarSparseRecords returns the sparse records type of the zVariable in a CDF. Refer to Section 2.12.1 for the
description of sparse records.

129

The arguments to CDFgetzVarSparseRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The variable number.

sRecordsType The sparse records type.

4.3.64.1. Example(s)

The following example returns the sparse records type of the zVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
Dim sRecordsType as integer ¢ The sparse records type.
dim status as integer

try
status = CDFgetzVarSparseRecords (id, CDFgetVarNum (id, “MY_VAR?”), sRecordsType) ...
catch ex as Exception

end try

4.3.65 CDFhyperGetrVarData

integer CDFhyperGetrVarData(‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, ‘ in -- rVariable number.
recStart as integer, ¢ in -- Starting record number.

in -- Number of records.

in -- Reading interval between records.

in -- Dimension indices of starting value.

in -- Number of values along each dimension.

recCount as integer,
recInterval as integer,
indices as integer(),
counts as integer(),

intervals as integer(), ‘ in -- Reading intervals along each dimension.
buffer as TYPE) ‘ out -- Buffer of values.
* TYPE -- VB value/string type (likely an array)
¢ or object

CDFhyperGetrVarData is used to read one or more values for the specified rVariable. It is important to know the
variable majority of the CDF before using this method because the values placed into the data buffer will be in that
majority. CDFinquireCDF can be used to determine the default variable majority of a CDF distribution. The Concepts
chapter in the CDF User's Guide describes the variable majorities.

130

The record number starts at 0, not 1. For example, if you want to read the first 5 records, the starting record number
(recStart), the number of records to read (recCount), and the record interval (recInterval) should be 0, 5, and 1,
respectively. Note: you need to provide dummy arrays, with at least one (1) element, for indices, counts and intervals
for scalar variables.

The arguments to CDFhyperGetrVarData are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number from which to read data. This number may be determined with a call to
CDFgetVarNum.

recStart The record number at which to start reading.

recCount The number of records to read.

recInterval The reading interval between records (e.g., an interval of 2 means read every other record).

indices The dimension indices (within each record) at which to start reading. Each element of indices

specifies the corresponding dimension index. For 0-dimensional rVariable, this argument is
ignored (but must be present).

counts The number of values along each dimension to read. Each element of counts specifies the
corresponding dimension count. For 0-dimensional rVariable, this argument is ignored (but must
be present).

intervals For each dimension, the dimension interval between reading (e.g., an interval of 2 means read
every other value). Each element of intervals specifies the corresponding dimension interval.
For 0-dimensional rVariable, this argument is ignored (but must be present).

buffer The data holding buffer for the read values. The majority of the values in this buffer will be the
same as that of the CDF. This buffer must be large to hold the values. CDFinquirerVar can be
used to determine the rVariable's data type and number of elements (of that data type) at each
value. If a dimensional array of strings is expected, then use object type.

4.3.65.1. Example(s)

The following example will read 3 records of data, starting at record number 13 (14™ record), from a rVariable named
Temperature The variable is a 3-dimensional array with sizes (180,91,10) and the CDF’s variable majority is
ROW_MAIJOR. The record variance is VARY, the dimension variances are (VARY,VARY,VARY), and the data type
is CDF_REAL4. This example is similar to the CDFgetrVarData example except that it uses a single call to
CDFhyperGetrVarData (rather than numerous calls to. CDFgetrVarData).

CDF identifier.

Returned status code.

Temperature values.

rVariable number.

Start record number.

Number of records to read

Record interval — read every record

dim id as long

Dim status as integer

Dim tmp(,,,) as single

Dim varN as integer

Dim recStart as integer = 13
Dim recCount as integer = 3
Dim reclnterval as integer = 1

131

Dim indices() as integer = {0,0,0} Dimension indices.

Dim counts() as integer = {180,91,10} ¢ Dimension counts.
Dim intervals() as integer = {1,1,1} Dimension intervals — read all
try
status = CDFhyperGetrVarData (id, varN, recStart, recCount, reclnterval, indices, counts, intervals,
tmp)

catch ex as Exception
end try

Note that if the CDF's variable majority had been COLUMN_ MAIJOR, the tmp array would have been declared float
tmp(10,91,180,3) for proper indexing.

4.3.66 CDFhyperGetzVarData

integer CDFhyperGetzVarData(‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, ¢ in -- zVariable number.
recStart as integer, ¢ in -- Starting record number.

in -- Number of records.

in -- Reading interval between records.

in -- Dimension indices of starting value.

in -- Number of values along each dimension.

recCount as integer,
recInterval as integer,
indices as integer(),
counts as integer(),

intervals as integer(), ‘ in -- Reading intervals along each dimension.
buffer as TYPE) ‘ out -- Buffer of values.
* TYPE -- VB value/string type (likely an array)
¢ or object.

CDFhyperGetzVarData is used to read one or more values for the specified zVariable. It is important to know the
variable majority of the CDF before using this method because the values placed into the data buffer will be in that
majority. CDFinquireCDF can be used to determine the default variable majority of a CDF distribution. The Concepts
chapter in the CDF User's Guide describes the variable majorities.

The record number starts at 0, not 1. For example, if you want to read the first 5 records, the starting record number
(recStart), the number of records to read (recCount), and the record interval (recInterval) should be 0, 5, and 1,
respectively. Note: you need to provide dummy arrays, with at least one (1) element, for indices, counts and intervals
for scalar variables.

The arguments to CDFhyperGetzVarData are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number from which to read data. This number may be determined with a call to
CDFgetVarNum.
recStart The record number at which to start reading.

132

recCount

recInterval

indices

counts

intervals

buffer

The number of records to read.
The reading interval between records (e.g., an interval of 2 means read every other record).

The dimension indices (within each record) at which to start reading. Each element of indices
specifies the corresponding dimension index. For 0-dimensional zVariable, this argument is
ignored (but must be present).

The number of values along each dimension to read. Each element of counts specifies the
corresponding dimension count. For 0-dimensional zVariable, this argument is ignored (but
must be present).

For each dimension, the dimension interval between reading (e.g., an interval of 2 means read
every other value). Each element of intervals specifies the corresponding dimension interval.
For 0-dimensional zVariable, this argument is ignored (but must be present).

The data holding buffer for the read values. The majority of the values in this buffer will be the
same as that of the CDF. This buffer must be large to hold the values. CDFinquirezVar can be
used to determine the zVariable's data type and number of elements (of that data type) at each
value. If a dimensional array of strings is expected, then use object type.

4.3.66.1. Example(s)

The following example will read 3 records of data, starting at record number 13 (14™ record), from a zVariable named
Temperature The variable is a 3-dimensional array with sizes (180,91,10) and the CDF’s variable majority is
ROW_MAIJOR. The record variance is VARY, the dimension variances are {VARY,VARY,VARY}, and the data
type is CDF_REAL4. This example is similar to the CDFgetzVarData example except that it uses a single call to
CDFhyperGetzVarData (rather than numerous calls to. CDFgetzVarData).

dim id as long

Dim status as integer

Dim tmp(,,,) as single

Dim varN as integer

Dim recStart as integer = 13
Dim recCount as integer = 3
Dim reclnterval as integer = 1
Dim indices() as integer = {0,0,0}

¢ CDF 1identifier.

Returned status code.

Temperature values.

zVariable number.

Start record number.

Number of records to read

Record interval — read every record
Dimension indices.

Dim counts() as integer = {180,91,10} ¢ Dimension counts.

Dim intervals() as integer = {1,1,1}

try

Dimension intervals — read all

varN = CDFgetVarNum (id, "Temperature")

status = CDFhyperGetzVarData (id, varN, recStart, recCount, recInterval, indices, counts, intervals,

tmp)

catch ex as Exception

133

end try

Note that if the CDF's variable majority had been COLUMN_ MAIJOR, the tmp array would have been declared float
tmp(10,91,180,3) for proper indexing.

4.3.67 CDFhyperPutrVarData

integer CDFhyperPutrVarData(‘ out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, ‘ in -- rVariable number.

recStart as integer, ¢ in -- Starting record number.
recCount as integer, ‘ in -- Number of records.

recInterval as integer, ‘ in -- Writing interval between records.

indices as integer(), in -- Dimension indices of starting value.
counts as integer(), in -- Number of values along each dimension.
intervals as integer(), in -- Writing intervals along each dimension.
buffer as TYPE) ‘ in -- Buffer of values.

TYPE -- VB value/string type (likely an array)

CDFhyperPutrVarData is used to write one or more values from the data holding buffer to the specified rVariable. It is
important to know the variable majority of the CDF before using this method because the values in the data buffer will
be written using that majority. CDFinquireCDF can be used to determine the default variable majority of a CDF
distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities.

The record number starts at 0, not 1. For example, if you want to write 2 records (10™ and 11" record), the starting
record number (recStart), the number of records to write (recCount), and the record interval (recInterval) should be 9, 2,
and 1, respectively. Note: you need to provide dummy arrays, with at least one (1) element, for indices, counts and
intervals for scalar variables.

The arguments to CDFhyperPutrVarData are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number to which write data. This number may be determined with a call to
CDFgetVarNum.

recStart The record number at which to start writing.

recCount The number of records to write.

recInterval The interval between records for writing (e.g., an interval of 2 means write every other record).

indices The indices (within each record) at which to start writing. Each element of indices specifies the

corresponding dimension index. For 0-dimensional rVariable this argument is ignored (but must
be present).

counts The number of values along each dimension to write. Each element of counts specifies the

corresponding dimension count. For 0-dimensional rVariable this argument is ignored (but must
be present).

134

intervals For each dimension, the interval between values for writing (e.g., an interval of 2 means write
every other value). Each element of intervals specifies the corresponding dimension interval.
For 0-dimensional rVariable this argument is ignored (but must be present).

buffer The data holding buffer of values to write. The majority of the values in this buffer must be the
same as that of the CDF. The values starting at memory address buffer are written to the CDF.

4.3.67.1. Example(s)

The following example writes 2 records to a rVariable named LATITUDE that is a 1-dimensional array with dimension
sizes (181). The dimension variances are {VARY}, and the data type is CDF INT2. This example is similar to the
CDFputrVarData example except that it uses a single call to CDFhyperPutrVarData rather than numerous calls to
CDFputrVarData.

dim id as long ¢ CDF identifier.
Dim status as integer Returned status code.
Dim i as integer, j as integer Latitude value.

Dim lats(2,181) as short ¢ Buffer of latitude values.
Dim varN as integer rVariable number.
Dim recStart as integer = 0 Record number.

Dim recCount as integer = 2 Record counts.

Dim reclnterval as integer = 1 Record interval.

Dim indices() as integer = {0} Dimension indices.
Dim counts() as integer = {181} Dimension counts.
Dim intervals() as integer = {1} Dimension intervals.

try
varN = CDFgetVarNum (id, "LATITUDE")
fori=0 tol
forj= -90 to 90
lats(i,90+1at) = Ctype(j, short)
next j
next i

...status = CDFhyperPutrVarData (id, varN, recStart, recCount, reclnterval, indices, counts, intervals, lats)

catch ex as Exception

end try

4.3.68 CDFhyperPutzVarData

integer CDFhyperPutzVarData(¢ out -- Completion status code.

135

id as long,

varNum as integer,
recStart as integer,
recCount as integer,
recInterval as integer,
indices as integer(),
counts as integer(),
intervals as integer(),
buffer as TYPE)

‘ in -- CDF identifier.

in -- zVariable number.
¢ in -- Starting record number.
in -- Number of records.

‘ in -- Writing interval between records.

in -- Dimension indices of starting value.

in -- Number of values along each dimension.
in -- Writing intervals along each dimension.
in -- Buffer of values.

TYPE -- VB value/string type (likely an array).

CDFhyperPutzVarData is used to write one or more values from the data holding buffer to the specified zVariable. It is
important to know the variable majority of the CDF before using this method because the values in the data buffer will

be written using that

majority. CDFinquireCDF can be used to determine the default variable majority of a CDF

distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities.

The record number starts at 0, not 1. For example, if you want to write 2 records (10" and 11" record), the starting
record number (recStart), the number of records to write (recCount), and the record interval (recInterval) should be 9, 2,
and 1, respectively. Note: you need to provide dummy arrays, with at least one (1) element, for indices, counts and
intervals for scalar variables.

The arguments to CDFhyperPutzVarData are defined as follows:

id

varNum

recStart

recCount

recInterval

indices

counts

intervals

buffer

The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

The zVariable number to which write data. This number may be determined with a call to
CDFgetVarNum.

The record number at which to start writing.

The number of records to write.

The interval between records for writing (e.g., an interval of 2 means write every other record).
The indices (within each record) at which to start writing. Each element of indices specifies the
corresponding dimension index. For 0-dimensional zVariable this argument is ignored (but must
be present).

The number of values along each dimension to write. Each element of counts specifies the
corresponding dimension count. For 0-dimensional zVariable this argument is ignored (but must
be present).

For each dimension, the interval between values for writing (e.g., an interval of 2 means write
every other value). Each element of intervals specifies the corresponding dimension interval.

For 0-dimensional zVariable this argument is ignored (but must be present).

The data holding buffer of values to write. The majority of the values in this buffer must be the
same as that of the CDF. The values starting at memory address buffer are written to the CDF.

4.3.68.1. Example(s)

136

The following example writes 2 records to a zVariable named LATITUDE that is a 1-dimensional array with
dimension sizes (181). The dimension variances are {VARY}, and the data type is CDF _INT2. This example is
similar to the CDFputzVarData example except that it uses a single call to CDFhyperPutzVarData rather than
numerous calls to CDFputzVarData.

dim id as long ¢ CDF identifier.
Dim status as integer Returned status code.
Dim i as integer, j as integer Latitude value.

Dim lats(2,181) as short ¢ Buffer of latitude values.
Dim varN as integer zVariable number.
Dim recStart as integer = 0 Record number.

Dim recCount as integer = 2 Record counts.

Dim reclnterval as integer = 1 Record interval.

Dim indices() as integer = {0} Dimension indices.
Dim counts() as integer = {181} Dimension counts.
Dim intervals() as integer = {1} Dimension intervals.

try
varN = CDFgetVarNum (id, "LATITUDE")
fori=0 to 1
forj= -90 to 90
lats(i,90+1at) = Ctype(j, short)
next j

next i
...status = CDFhyperPutzVarData (id, varN, recStart, recCount, recInterval, indices, counts, intervals, lats)

catch ex as Exception

end try

4.3.69 CDFinquirerVar

integer CDFinquirezVar(out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, in -- rVariable number.

varName as string, out -- rVariable name.

dataType as integer, out -- Data type.

numElements as integer, out -- Number of elements (of the data type).
numDims as integer, out -- Number of dimensions.

dimSizes as integer(), out -- Dimension sizes

recVariance as integer, out -- Record variance.

dimVariances as integer()) out -- Dimension variances.

137

CDFinquirerVar is used to inquire about the specified rVariable. This method would normally be used before reading
rVariable values (with CDFgetrVarData or CDFhyperGetrVarData) to determine the data type and number of elements

of that data type.

The arguments to CDFinquirezVar are defined as follows:

id

varNum

varName
dataType

numElements

numDims

dimSizes

recVariance

dimVariances

4.3.69.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The number of the rVariable to inquire. This number may be determined with a call to
CDFgetVarNum (see Section 4.3.41).

The rVariable's name.

The data type of the rVariable. The data types are defined in Section 2.6.

The number of elements of the data type at each rVariable value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The number of dimensions.

The dimension sizes. It is a 1-dimensional array, containing one element per dimension.
Each element of dimSizes receives the corresponding dimension size. For 0-dimensional
zVariables this argument is ignored (but must be present).

The record variance. The record variances are defined in Section 2.10.

The dimension variances. Each element of dimVariances receives the corresponding

dimension variance. The dimension variances are described in Section 2.10. For 0-
dimensional zVariables this argument is ignored (but a placeholder is necessary).

The following example returns information about a rVariable named HEAT FLUX in a CDF.

dim id as long

Dim status as integer

Dim varName as string
Dim dataType as integer
Dim numElems as integer
Dim recVary as integer
Dim numDims as integer
Dim dimSizes() as integer
Dim dimVarys() as integer

try

CDF identifier.

Returned status code.

rVariable name.

Data type of the rVariable.

Number of elements (of data type).
Record variance.

Number of dimensions.

Dimension sizes

Dimension variances

138

status = CDFinquirerVar(id, CDFgetVarNum (id,"HEAT FLUX"), varName, dataType, _
numElems, numDims, dimSizes, recVary, dimVarys)

catch ex as Exception

end try

4.3.70 CDFinquirezVar

integer CDFinquirezVar(
id as long,

varNum as integer,
varName as string,
dataType as integer,
numElements as integer,
numDims as integer,
dimSizes as integer(),
recVariance as integer,
dimVariances as integer())

out --

Completion status code.

in -- CDF identifier.
in -- zVariable number.

out -- zVariable name.

out -- Data type.

out -- Number of elements (of the data type).
out -- Number of dimensions.

out -- Dimension sizes

out -- Record variance.

out -- Dimension variances.

CDFinquirezVar is used to inquire about the specified zVariable. This method would normally be used before reading
zVariable values (with CDFgetzVarData or CDFhyperGetzVarData) to determine the data type and number of elements

of that data type.

The arguments to CDFinquirezVar are defined as follows:

id

varNum

varName
dataType

numElements

numDims

dimSizes

recVariance

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The number of the zVariable to inquire. This number may be determined with a call to
CDFgetVarNum (see Section 4.3.41).

The zVariable's name.

The data type of the zVariable. The data types are defined in Section 2.6.

The number of elements of the data type at each zVariable value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The number of dimensions.

The dimension sizes. It is a 1-dimensional array, containing one element per dimension.
Each element of dimSizes receives the corresponding dimension size. For 0-dimensional

zVariables this argument is ignored (but must be present).

The record variance. The record variances are defined in Section 2.10.

139

dimVariances The dimension variances. Each element of dimVariances receives the corresponding
dimension variance. The dimension variances are described in Section 2.10. For 0-
dimensional zVariables this argument is ignored (but a placeholder is necessary).

4.3.70.1. Example(s)

The following example returns information about an zVariable named HEAT FLUX in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.

Dim varName as string zVariable name.

Dim dataType as integer Data type of the zVariable.

Dim numElems as integer Number of elements (of data type).
Dim recVary as integer Record variance.

Dim numDims as integer Number of dimensions.

Dim dimSizes() as integer Dimension sizes

Dim dimVarys() as integer Dimension variances

try
status = CDFinquirezVar(id, CDFgetVarNum (id,"HEAT FLUX"), varName, dataType,
numElems, numDims, dimSizes, recVary, dimVarys)

catch ex as Exception

end try

4.3.71 CDFputrVarData

integer CDFputrVarData(‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
recNum as integer, in -- Record number.

indices as integer(), ‘ in -- Dimension indices.
value as TYPE) ¢ in -- Data value.

* TYPE -- VB value/string type

CDFputrVarData writes a single data value to the specified index, the location of the element, in the given record of the
specified rVariable in a CDF.

The arguments to CDFputrVarData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

140

varNum The rVariable number.

recNum The record number.
indices The dimension indices within the record.
value The data value.

4.3.71.1. Example(s)

The following example will write two data values, the first and the fifth element, in Record 0 from rVariable
“MY_VAR?”, a 2-dimensional (2 by 3), CDF _DOUBLE type variable, in a row-major CDF. The first put operation
passes the pointer of the data value, while the second operation passes the data value as an object.

dim id as long CDF identifier.

Dim varNum as integer ‘ rVariable number.
Dim recNum as integer The record number.
Dim indices(2) as integer The dimension indices.
Dim valuel as double, value2 as double The data values.

Dim status as integer.

3
3

3

try
varNum = CDFgetVarNum (id, “MY_VAR”)
recNum = 0
indices(0) =0
indices(1) =0
valuel = 10.1
status = CDFputrVarData (id, varNum, recNum, indices, valuel)
indices(0) =1
indices(1) =1
value2 =20.2
status = CDFputrVarData (id, varNum, recNum, indices, value2)

catch ex as Exception

end try

4.3.72 CDFputrVarPadValue

integer CDFputrVarPadValue(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varNum as integer, in -- Variable number.
value as TYPE) ¢ in -- Pad value.
‘' TYPE — VB value/string type

141

CDFputrVarPadValue specifies the pad value for the specified rVariable in a CDF. A rVariable's pad value may be
specified (or respecified) at any time without affecting already written values (including where pad values were used).
The Concepts chapter in the CDF User's Guide describes variable pad values.

The arguments to CDFputrVarPadValue are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

value The pad value.

4.3.72.1. Example(s)

The following example sets the pad value to —9999 for rVariable “MY_VAR”, a CDF INT4 type variable, and
cxEExE” for another rVariable “MY_VAR2”, a CDF_CHAR type with a number of elements of five (5), in a CDF.

dim id as long CDF identifier.

Dim padValuel as integer = -9999 ¢ An integer pad value.
Dim padValue?2 as string = “*****» ‘ A string pad value. °
try

status = CDFputrVarPadValue (id, CDFgetVarNum (id, “MY_VAR”), padValuel)

status = CDFputrVarPadValue (id, CDFgetVarNum (id, “MY_VAR2”), padValue2)

catch ex as Exception

end try

4.3.73 CDFputrVarRecordData

integer CDFputrVarRecordData(‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varNum as integer, in -- Variable number.
recNum as integer, in -- Record number.
buffer as TYPE) ‘ in -- Record data.
* TYPE -- VB value/string type (likely an
array)

142

CDFputrVarRecordData writes an entire record at a given record number for the specified rVariable in a CDF. The
buffer should hold the entire data values for the variable. The data values in the buffer should be in the order that
corresponds to the variable majority defined for the CDF.

The arguments to CDFputrVarRecordData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.
recNum The record number.
buffer The buffer holding the entire record values.

4.3.73.1. Example(s)

The following example will write one full record (numbered 2) from rVariable “MY_VAR?”, a 2-dimension (2 by 3),
CDF _INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

dim id as long
Dim varNum as integer
Dim buffer(2,3) as integer = {{1,2,3},{4,5,6}}

try

varNum = CDFvarNum (id,”"MY_VAR”)

¢ CDF identifier.
¢ rVariable number.
‘ The data holding buffer.

status = CDFputrVarRecordData (id, varNum, 2, buffer)

catch ex as Exception

end try

4.3.74 CDFputrVarSeqData

integer CDFputrVarSeqData(
id as long,

varNum as integer,

value as TYPE)

out -- Completion status code.
¢ in-- CDF identifier.

in -- Variable number.

in -- Data value.

* TYPE -- VB value/string type

143

CDFputrVarSeqData writes one value to the specified rVariable in a CDF at the current sequential value (position) for
that variable. After the write, the current sequential value is automatically incremented to the next value. Use
CDFsetrVarSeqPos method to set the current sequential value (position).

The arguments to CDFputrVarSeqData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

value The buffer holding the data value.

4.3.74.1. Example(s)

The following example will write two data values starting at record number 2 from a 2-dimensional rVariable whose
data type is CDF _INT4. The first write will pass in a pointer from the data value, while the second write will pass in
the data value object directly.

dim id as long CDF identifier.

Dim varNum as integer ¢ The variable number.
Dim valuel as integer, value2 as integer The data value.

Dim indices(2) as integer The indices in a record.
Dim recNum as integer The record number.
dim status as integer

3
3

3

recNum = 2
indices(0) = 1
indices(1) =2

try
valuel = 10
value2 = -20.

status = CDFsetrVarSeqPos (id, varNum, recNum, indices)
status = CDFputrVarSeqData (id, varNum, valuel)
status = CDFputrVarSeqData (id, varNum, value2)

catch ex as Exception

end try

4.3.75 CDFputzVarData

integer CDFputzVarData(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
recNum as integer, in -- Record number.

144

3

indices as integer(), in -- Dimension indices.
value as TYPE) ¢ in -- Data value.
* TYPE -- VB value/string type

CDFputzVarData writes a single data value to the specified index, the location of the element, in the given record of the
specified zVariable in a CDF.
The arguments to CDFputzVarData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

recNum The record number.

indices The dimension indices within the record.
value The data value.

4.3.75.1. Example(s)

The following example will write two data values, the first and the fifth element, in Record 0 from zVariable
“MY_VAR?”, a 2-dimensional (2 by 3), CDF _DOUBLE type variable, in a row-major CDF. The first put operation
passes the pointer of the data value, while the second operation passes the data value as an object.

dim id as long CDF identifier.

dim varNum as integer ¢ zVariable number.

dim recNum as integer The record number.
Dim indices(2) as integer The dimension indices.
Dim valuel as double, value2 as double The data values.

Dim status as integer.

3
3

3

try
varNum = CDFgetVarNum (id, “MY_VAR”)
recNum = 0
indices(0) =0
indices(1) =0
valuel = 10.1
status = CDFputzVarData (id, varNum, recNum, indices, valuel)
indices(0) = 1
indices(1) =1
value2 =20.2
status = CDFputzVarData (id, varNum, recNum, indices, value2)

catch ex as Exception

145

end try

4.3.76 CDFputzVarPadValue

integer CDFputzVarPadValue(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varNum as integer, in -- Variable number.
value as TYPE) ‘¢ in -- Pad value.
* TYPE -- VB value/string type

CDFputzVarPadValue specifies the pad value for the specified zVariable in a CDF. A zVariable's pad value may be
specified (or respecified) at any time without affecting already written values (including where pad values were used).
The Concepts chapter in the CDF User's Guide describes variable pad values.

The arguments to CDFputzVarPadValue are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

value The pad value.

4.3.76.1. Example(s)

The following example sets the pad value to —9999 for zVariable “MY_VAR”, a CDF INT4 type variable, and
cxExxE” for another zVariable “MY_ VAR2”, a CDF_CHAR type with a number of elements of five (5), in a CDF.

dim id as long CDF identifier.
dim padValuel as integer = -9999 ¢ An integer pad value.
Dim padValue?2 as string = “*****» ‘ A string pad value. °

Dim status as integer.
try
status = CDFputzVarPadValue (id, CDFgetVarNum (id, “MY_VAR?”), padValuel)

status = CDFputzVarPadValue (id, CDFgetVarNum (id, “MY_VAR2”), padValue2)

catch ex as Exception

end try

146

4.3.77 CDFputzVarRecordData

integer CDFputzVarRecordData(‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varNum as integer, in -- Variable number.
recNum as integer, in -- Record number.
buffer as TYPE) ‘ in -- Record data.
* TYPE -- VB value/string type (likely an
array)

CDFputzVarRecordData writes an entire record at a given record number for the specified zVariable in a CDF. The
buffer should hold the entire data values for the variable. The data values in the buffer should be in the order that
corresponds to the variable majority defined for the CDF.

The arguments to CDFputzVarRecordData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
recNum The record number.
buffer The buffer holding the entire record values.

4.3.77.1. Example(s)

The following example will write one full record (numbered 2) from zVariable “MY_VAR?”, a 2-dimension (2 by 3),
CDF _INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

dim id as long CDF identifier.

dim varNum as integer ¢ zVariable number.

Dim buffer(,)as integer = {{1,2,3},{4,5,6}} ¢ The data holding buffer.
Dim status as integer

try

varNum = CDFvarNum (id,”"MY_VAR”)

status = CDFputzVarRecordData (id, varNum, 2, buffer)
catch ex as Exception

end try

147

4.3.78 CDFputzVarSeqData

integer CDFputzVarSeqData(out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varNum as integer, in -- Variable number.
value as TYPE) ‘ in -- Data value.
* TYPE -- VB value/string type

CDFputzVarSeqData writes one value to the specified zVariable in a CDF at the current sequential value (position) for
that variable. After the write, the current sequential value is automatically incremented to the next value. Use
CDFsetzVarSeqPos method to set the current sequential value (position).

The arguments to CDFputzVarSeqData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

value The buffer holding the data value.

4.3.78.1. Example(s)

The following example will write two data values starting at record number 2 from a 2-dimensional zVariable whose
data type is CDF _INT4. The first write will pass in a pointer from the data value, while the second write will pass in
the data value object directly.

dim id as long * CDF identifier.

dim varNum as integer ¢ The variable number.
dim valuel as integer, value2 as integer The data value.

Dim indices(2) as integer The indices in a record.
dim recNum as integer The record number.
Dim status as integer

3
3

3

recNum = 2
indices(0) = 1
indices(1) =2

try
valuel = 10
value2 = -20.

status = CDFsetzVarSeqPos (id, varNum, recNum, indices)
status = CDFputzVarSeqData (id, varNum, valuel)
status = CDFputzVarSeqData (id, varNum, value2)

catch ex as Exception

end try

148

4.3.79 CDFrenamerVar

integer CDFrenamerVar(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- rVariable number.
varName as string) in -- New name.

CDFrenamerVar is used to rename an existing rVariable. A variable (rVariable or zVariable) with the same name must
not already exist in the CDF.
The arguments to CDFrenamerVar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum The number of the rVariable to rename. This number may be determined with a call to
CDFgetVarNum.
varName The new rVariable name. This may be at most CDF VAR NAME LEN256 characters.

Variable names are case-sensitive.

4.3.79.1. Example(s)

In the following example the rVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDFgetVarNum returns a value less than zero (0) then that value is not an rVariable number but rather an error code.

dim id as long ¢ CDF identifier.

dim status as integer ‘ Returned status code.
dim varNum as integer ‘¢ zVariable number.
try

varNum = CDFgetVarNum (id, "TEMPERATURE")
status = CDFrenamerVar (id, varNum, "TMP")

catch ex as Exception

end try

149

4.3.80 CDFrenamezVar

integer CDFrenamezVar(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- zVariable number.
varName as string) in -- New name.

CDFrenamezVar is used to rename an existing zVariable. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.
The arguments to CDFrenamezVar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum The number of the zVariable to rename. This number may be determined with a call to
CDFgetVarNum.
varName The new zVariable name. This may be at most CDF VAR NAME LEN256 characters.

Variable names are case-sensitive.

4.3.80.1. Example(s)

In the following example the zVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDFgetVarNum returns a value less than zero (0) then that value is not an zVariable number but rather an error code.

dim id as long ¢ CDF identifier.
dim status as integer ‘ Returned status code.
dim varNum as integer ¢ zVariable number.

try
varNum = CDFgetVarNum (id, "TEMPERATURE")
status = CDFrenamezVar (id, varNum, "TMP")

catch ex as Exception

end try

4.3.81 CDFsetrVarAllocBlockRecords

integer CDFsetrVarAllocBlockRecords(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

150

3

in -- Variable number.
in -- First record number.
in -- Last record number.

varNum as integer,
firstRec as integer,
lastRec as integer)

3

3

CDFsetrVarAllocBlockRecords specifies a range of records to be allocated (not written) for the specified rVariable in a
CDF. This operation is only applicable to uncompressed rVariable in single-file CDFs. Refer to the CDF User’s Guide
for the descriptions of allocating variable records.

The arguments to CDFsetrVarAllocBlockRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.
firstRec The first record number to allocate.
lastRec The last record number to allocate.

4.3.81.1. Example(s)

The following example allocates 10 records, from record numbered 10 to 19, for rVariable “MY_VAR” in a CDF.

dim id as long * CDF identifier.
dim firstRec as integer, lastRec as integer ¢ The first/last record numbers.
Dim status as integer.

firstRec = 10
lastRec = 19

try

status = CDFsetrVarAllocBlockRecords (id, CDFgetVarNum (id, “MY_VAR?”), firstRec, lastRec)

catch ex as Exception

end try

4.3.82 CDFsetrVarAllocRecords

integer CDFsetrVarAllocRecords(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
numRecs as integer) in -- Number of records.

151

CDFsetrVarAllocRecords specifies a number of records to be allocated (not written) for the specified rVariable in a
CDF. The records are allocated beginning at record number zero (0). This operation is only applicable to uncompressed
rVariable in single-file CDFs. Refer to the CDF User’s Guide for the descriptions of allocating variable records.

The arguments to CDFsetrVarAllocRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

numRecs The number of records to allocate.

4.3.82.1. Example(s)

The following example allocates 100 records, from record numbered 0 to 99, for rVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
dim numRecs as integer ¢ The number of records.
dim status as integer

numRecs = 100
try

status = CDFsetrVarAllocRecords (id, CDFgetVarNum (id, “MY_VAR”), numRecs)

catch ex as Exception

end try

4.3.83 CDFsetrVarBlockingFactor

integer CDFsetrVarBlockingFactor(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

bf as integer) in -- Blocking factor.

CDFsetrVarBlockingFactor specifies the blocking factor (number of records allocated) for the specified rVariable in a
CDF. Refer to the CDF User’s Guide for a description of the blocking factor.
The arguments to CDFsetrVarBlockingFactor are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

152

varNum The rVariable number.

bf The blocking factor. A value of zero (0) indicates that the default blocking factor is being
used.

4.3.83.1. Example(s)

The following example sets the blocking factor to 100 records for rVariable “MY_ VAR” in a CDF.

dim id as long CDF identifier.
Dim bf as integer ¢ The blocking factor.
dim status as integer

bf= 100
try

status = CDFsetrVarBlockingFactor (id, CDFgetVarNum (id, “MY_VAR?”), bf)

catch ex as Exception

end try

4.3.84 CDFsetrVarCacheSize

integer CDFsetrVarCacheSize(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
numBuffers as integer) in -- Number of cache buffers.

CDFsetrVarCacheSize specifies the number of cache buffers being for the rVariable in a CDF. This operation is not
applicable to a single-file CDF. Refer to the CDF User’s Guide for description about caching scheme used by the CDF
library.

The arguments to CDFsetrVarCacheSize are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

numBuffers The number of cache buffers.

153

4.3.84.1. Example(s)

The following example sets the number of cache buffers to 10 for rVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
Dim numBuffers as integer ¢ The number of cache buffers.
dim status as integer

numBuffers = 10
try

status = CDFsetrVarCacheSize (id, CDFgetVarNum (id, “MY_VAR”), numBuffers)

catch ex as Exception

end try

4.3.85 CDFsetrVarCompression

integer CDFsetrVarCompression(
id as long,

varNum as integer,

compType as integer,

cParms as integer())

out -- Completion status code.
‘ in -- CDF identifier.

in -- Variable number.

in -- Compression type.

in -- Compression parameters.

CDFsetrVarCompression specifies the compression type/parameters for the specified rVariable in a CDF. Refer to
Section 2.11 for a description of the CDF supported compression types/parameters.
The arguments to CDFsetrVarCompression are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.
compType The compression type.
cParms The compression parameters.

4.3.85.1. Example(s)

The following example sets the compression to GZIP.6 for rVariable “MY_VAR” in a CDF.

154

dim id as long CDF identifier.

Dim compType as integer ¢ The compression type.

Dim cParms(1) as integer ¢ The compression parameters.
dim status as integer

compType = GZIP_ COMPRESSION
cParms(0) =6
try

status = CDFsetrVarCompression (id, CDFgetVarNum (id, “MY_VAR?”), compType, cParms)

catch ex as Exception

end try

4.3.86 CDFsetrVarDataSpec

integer CDFsetrVarDataSpec(‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
dataType as integer) in -- Data type.

CDFsetrVarDataSpec respecifies the data type of the specified rVariable in a CDF. The variable’s data type cannot be
changed if the new data type is not equivalent (type having a different data size) to the old data type and any values
(including the pad value) have been written. Data specifications are considered equivalent if the data types are
equivalent. Refer to the CDF User’s Guide for equivalent data types.

The arguments to CDFsetrVarDataSpec are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

dataType The new data type.

4.3.86.1. Example(s)

The following example respecifies the data type to CDF INT2 (from its original CDF UINT2) for rVariable
“MY_VAR” in a CDF.

155

dim id as long CDF identifier.
Dim dataType as integer ¢ The data type.
Dim status as integer.

dataType = CDF_INT2
try

status = CDFsetrVarDataSpec (id, CDFgetVarNum (id, “MY_VAR?”), dataType)

catch ex as Exception

end try

4.3.87 CDFsetrVarDimVariances

integer CDFsetrVarDimVariances(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
dimVarys as integer()) in -- Dimension variances.

CDFsetrVarDimVariances respecifies the dimension variances of the specified rVariable in a CDF. For 0-dimensional
rVariable, this operation is not applicable. The dimension variances are described in Section 2.10.
The arguments to CDFsetrVarDimVariances are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

dimVarys The dimension variances.

4.3.87.1. Example(s)

The following example resets the dimension variances to true (VARY) and true (VARY) for rVariable “MY_VAR”, a
2-dimensional variable, in a CDF.

dim id as long CDF identifier.

dim varNum as integer ‘ rVariable number.

Dim dimVarys() as integer = {VARY, VARY} ¢ The dimension variances.
dim status as integer

try

varNum = CDFgetVarNum (id, “MY_VAR?”)

156

status = CDFsetrVarDimVariances (id, varNum, dimVarys)

catch ex as Exception

end try

4.3.88 CDFsetrVarlnitialRecs

integer CDFsetrVarlnitialRecs(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
numRecs as integer) in -- Number of records.

CDFsetrVarlnitialRecs specifies a number of records to initially write to the specified rVariable in a CDF. The records
are written beginning at record number 0 (zero). This may be specified only once per rVariable and before any other
records have been written to that rVariable. If a pad value has not yet been specified, the default is used (see the
Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is written to the
records. The Concepts chapter in the CDF User's Guide describes initial records.

The arguments to CDFsetrVarlnitialRecs are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

numRecs The initially written records.

4.3.88.1. Example(s)

The following example writes the initial 100 records to rVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.

dim varNum as integer ‘ rVariable number.

dim numRecs as integer ¢ The number of records.
Dim status as integer.

try
varNum = CDFgetVarNum (id, “MY_VAR”)

numRecs = 100
status = CDFsetrVarlInitialRecs (id, varNum, numRecs)

catch ex as Exception

157

end try

4.3.89 CDFsetrVarRecVariance

integer CDFsetrVarRecVariance(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
recVary as integer) in -- Record variance.

CDFsetrVarRecVariance specifies the record variance of the specified rVariable in a CDF. The record variances are
described in Section 2.10.
The arguments to CDFsetrVarRecVariance are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

recVary The record variance.

4.3.89.1. Example(s)

The following example sets the record variance to VARY (from NOVARY) for rVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
dim recVary as integer ¢ The record variance.
Dim status as integer.

recVary = VARY
try

status = CDFsetrVarRecVariance (id, CDFgetVarNum (id, “MY_VAR”), recVary)

catch ex as Exception

end try

4.3.90 CDFsetrVarReservePercent

3

integer CDFsetrVarReservePercent(out -- Completion status code.

158

id as long, ‘ in-- CDF identifier.
varNum as integer, ‘ in -- Variable number.
percent as integer) in -- Reserve percentage.

3

CDFsetrVarReservePercent specifies the compression reserve percentage being used for the specified rVariable in a
CDF. This operation only applies to compressed rVariables. Refer to the CDF User’s Guide for a description of the
reserve scheme used by the CDF library.

The arguments to CDFsetrVarReservePercent are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

percent The reserve percentage.

4.3.90.1. Example(s)

The following example sets the reserve percentage to 10 for rVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
dim percent as integer ¢ The reserve percentage.
Dim status as integer.

percent = 10
try

status = CDFsetrVarReservePercent (id, CDFgetVarNum (id, “MY_VAR?”), percent)

catch ex as Exception

end try

4.3.91 CDFsetrVarsCacheSize

integer CDFsetrVarsCacheSize(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
numBuffers as integer) ‘ in -- Number of cache buffers.

CDFsetrVarsCacheSize specifies the number of cache buffers to be used for all of the rVariable files in a CDF. This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library.

159

The arguments to CDFsetrVarsCacheSize are defined as follows:
id The identifier of the current CDF. This identifier must have been initialized by a call to

CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numBuffers The number of buffers.

4.3.91.1. Example(s)

The following example sets the number of cache buffers to 10 for all rVariables in a CDF.

dim id as long * CDF identifier.
dim numBuffers as integer ¢ The number of cache buffers.
Dim status as integer.

numBuffers = 10
try

status = CDFsetrVarsCacheSize (id, numBuffers)

catch ex as Exception

end try

4.3.92 CDFsetrVarSeqPos

integer CDFsetrVarSeqPos(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

dim recNum as integer, in -- Record number.

indices as integer()) in -- Indices in a record.

CDFsetrVarSeqPos specifies the current sequential value (position) for sequential access for the specified rVariable in
a CDF. Note that a current sequential value is maintained for each rVariable individually. Use CDFgetrVarSeqPos
method to get the current sequential value.

The arguments to CDFsetrVarSeqPos are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

recNum The rVariable record number.

160

indices The dimension indices. Each element of indices receives the corresponding dimension
index. For 0-dimensional rVariable, this argument is ignored, but must be presented.

4.3.92.1. Example(s)

The following example sets the current sequential value to the first value element in record number 2 for a rVariable, a
2-dimensional variable, in a CDF.

dim id as long CDF identifier.

Dim varNum as integer ¢ The variable number.
dim recNum as integer The record number.
Dim indices(2) as integer The indices.

3

3

recNum = 2
indices(0) =0
indices(1) =0
try

status = CDFsetrVarSeqPos (id, varNum, recNum, indices)
catch ex as Exception

end try

4.3.93 CDFsetrVarSparseRecords

integer CDFsetrVarSparseRecords(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- The variable number.
sRecordsType as integer) in -- The sparse records type.

CDFsetrVarSparseRecords specifies the sparse records type of the specified rVariable in a CDF. Refer to Section
2.12.1 for the description of sparse records.
The arguments to CDFsetrVarSparseRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

sRecordsType The sparse records type.

161

4.3.93.1. Example(s)

The following example sets the sparse records type to PAD SPARSERECORDS from its original type for rVariable
“MY_VAR” in a CDF.

dim id as long * CDF identifier.
dim sRecordsType as integer ¢ The sparse records type.
Dim status as integer.

sRecordsType = PAD_ SPARSERECORDS

try
status = CDFsetrVarSparseRecords (id, CDFgetVarNum (id, “MY_VAR?”), sRecordsType)

catch ex as Exception

end try

4.3.94 CDFsetzVarAllocBlockRecords

integer CDFsetzVarAllocBlockRecords(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
firstRec as integer, in -- First record number.
lastRec as integer) in -- Last record number.

CDFsetzVarAllocBlockRecords specifies a range of records to be allocated (not written) for the specified zVariable in
a CDF. This operation is only applicable to uncompressed zVariable in single-file CDFs. Refer to the CDF User’s
Guide for the descriptions of allocating variable records.

The arguments to CDFsetzVarAllocBlockRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
firstRec The first record number to allocate.
lastRec The last record number to allocate.

4.3.94.1. Example(s)

The following example allocates 10 records, from record numbered 10 to 19, for zVariable “MY_VAR” in a CDF.

162

dim id as long CDF identifier.
dim firstRec as integer, lastRec as integer ¢ The first/last record numbers.
dim status as integer

firstRec = 10
lastRec = 19

try

status = CDFsetzVarAllocBlockRecords (id, CDFgetVarNum (id, “MY_VAR?”), firstRec, lastRec)

catch ex as Exception

end try

4.3.95 CDFsetzVarAllocRecords

integer CDFsetzVarAllocRecords(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
numRecs as integer) in -- Number of records.

CDFsetzVarAllocRecords specifies a number of records to be allocated (not written) for the specified zVariable in a
CDF. The records are allocated beginning at record number zero (0). This operation is only applicable to uncompressed
zVariable in single-file CDFs. Refer to the CDF User’s Guide for the descriptions of allocating variable records.

The arguments to CDFsetzVarAllocRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numRecs The number of records to allocate.

4.3.95.1. Example(s)

The following example allocates 100 records, from record numbered 0 to 99, for zVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
Dim numRecs as integer ¢ The number of records.
Dim status as integer.

163

numRecs = 100
try

status = CDFsetzVarAllocRecords (id, CDFgetVarNum (id, “MY_VAR”), numRecs)

catch ex as Exception

end try

4.3.96 CDFsetzVarBlockingFactor

integer CDFsetzVarBlockingFactor(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

bf as integer) in -- Blocking factor.

CDFsetzVarBlockingFactor specifies the blocking factor (number of records allocated) for the specified zVariable in a
CDF. Refer to the CDF User’s Guide for a description of the blocking factor.
The arguments to CDFsetzVarBlockingFactor are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
bf The blocking factor. A value of zero (0) indicates that the default blocking factor is being
used.

4.3.96.1. Example(s)

The following example sets the blocking factor to 100 records for zVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
Dim bf as integer ¢ The blocking factor.
Dim status as integer.

bf=100
try
status = CDFsetzVarBlockingFactor (id, CDFgetVarNum (id, “MY_VAR?”), bf)

catch ex as Exception

164

end try

4.3.97 CDFsetzVarCacheSize

integer CDFsetzVarCacheSize(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
numBuffers as integer) in -- Number of cache buffers.

CDFsetzVarCacheSize specifies the number of cache buffers being for the zVariable in a CDF. This operation is not
applicable to a single-file CDF. Refer to the CDF User’s Guide for description about caching scheme used by the CDF
library.

The arguments to CDFsetzVarCacheSize are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numBuffers The number of cache buffers.

4.3.97.1. Example(s)

The following example sets the number of cache buffers to 10 for zVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
Dim numBuffers as integer ¢ The number of cache buffers.
Dim status as integer.

numBuffers = 10
try
status = CDFsetzVarCacheSize (id, CDFgetVarNum (id, “MY_VAR”), numBuffers)

catch ex as Exception
end try

4.3.98 CDFsetzVarCompression

165

integer CDFsetzVarCompression(out -- Completion status code.

id as long, ‘ in-- CDF identifier.
varNum as integer, ‘ in -- Variable number.
compType as integer, ¢ in -- Compression type.

cParms as integer in -- Compression parameters.
g

CDFsetzVarCompression specifies the compression type/parameters for the specified zVariable in a CDF. Refer to
Section 2.11 for a description of the CDF supported compression types/parameters.
The arguments to CDFsetzVarCompression are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
compType The compression type.
cParms The compression parameters.

4.3.98.1. Example(s)

The following example sets the compression to GZIP.6 for zVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
Dim compType as integer ¢ The compression type.
Dim cParms(1) as integer ¢ The compression parameters.

compType = GZIP_ COMPRESSION
cParms(0) =6
try

status = CDFsetzVarCompression (id, CDFgetVarNum (id, “MY_VAR”), compType, cParms)

catch ex as Exception

end try

4.3.99 CDFsetzVarDataSpec

integer CDFsetzVarDataSpec(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
dataType as integer) in -- Data type.

166

CDFsetzVarDataSpec respecifies the data type of the specified zVariable in a CDF. The variable’s data type cannot be
changed if the new data type is not equivalent (type having a different data size) to the old data type and any values
(including the pad value) have been written. Data specifications are considered equivalent if the data types are
equivalent. Refer to the CDF User’s Guide for equivalent data types.

The arguments to CDFsetzVarDataSpec are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

dataType The new data type.

4.3.99.1. Example(s)

The following example respecifies the data type to CDF INT2 (from its original CDF UINT2) for zVariable
“MY_VAR” in a CDF.

dim id as long CDF identifier.
Dim dataType as integer ¢ The data type.
Dim status. as integer

dataType = CDF_INT2
try

status = CDFsetzVarDataSpec (id, CDFgetVarNum (id, “MY_VAR?”), dataType)

catch ex as Exception

end try

4.3.100 CDFsetzVarDimVariances

integer CDFsetzVarDimVariances(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
dimVarys as integer()) in -- Dimension variances.

CDFsetzVarDimVariances respecifies the dimension variances of the specified zVariable in a CDF. For 0-dimensional
zVariable, this operation is not applicable. The dimension variances are described in Section 2.10.

167

The arguments to CDFsetzVarDimVariances are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

dimVarys The dimension variances.

4.3.100.1. Example(s)

The following example resets the dimension variances to true (VARY) and true (VARY) for zVariable “MY_VAR?”, a
2-dimensional variable, in a CDF.

dim id as long CDF identifier.
dim varNum as integer ‘¢ zVariable number.
Dim dimVarys()as integer = {VARY, VARY} ¢ The dimension variances.

Dim status as integer

try
varNum = CDFgetVarNum (id, “MY_VAR?”)
status = CDFsetzVarDimVariances (id, varNum, dimVarys)

catch ex as Exception

end try

4.3.101 CDFsetzVarlnitialRecs

integer CDFsetzVarlnitialRecs(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
numRecs as integer) in -- Number of records.

CDFsetzVarlnitialRecs specifies a number of records to initially write to the specified zVariable in a CDF. The records
are written beginning at record number 0 (zero). This may be specified only once per zVariable and before any other
records have been written to that zVariable. If a pad value has not yet been specified, the default is used (see the
Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is written to the
records. The Concepts chapter in the CDF User's Guide describes initial records.

The arguments to CDFsetzVarlInitialRecs are defined as follows:

168

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numRecs The initially written records.

4.3.101.1. Example(s)

The following example writes the initial 100 records to zVariable “MY_VAR” in a CDF.

dim id as long * CDF identifier.

dim varNum as integer ¢ zVariable number.
Dim numRecsas integer * The number of records.
dim status as integer

try
varNum = CDFgetVarNum (id, “MY_VAR”)
numRecs = 100
status = CDFsetzVarlnitialRecs (id, varNum, numRecs)

catch ex as Exception

end try

4.3.102 CDFsetzVarRecVariance

integer CDFsetzVarRecVariance(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
recVary as integer) in -- Record variance.

CDFsetzVarRecVariance specifies the record variance of the specified zVariable in a CDF. The record variances are
described in Section 2.10.
The arguments to CDFsetzVarRecVariance are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

recVary The record variance.

169

4.3.102.1. Example(s)

The following example sets the record variance to VARY (from NOVARY) for zVariable “MY_VAR” in a CDF.

dim id as long * CDF identifier.
Dim recVary as integer ¢ The record variance.
Dim status as integer

recVary = VARY
try

status = CDFsetzVarRecVariance (id, CDFgetVarNum (id, “MY_VAR”), recVary)

catch ex as Exception

end try

4.3.103 CDFsetzVarReservePercent

integer CDFsetzVarReservePercent(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
percent as integer) in -- Reserve percentage.

CDFsetzVarReservePercent specifies the compression reserve percentage being used for the specified zVariable in a
CDF. This operation only applies to compressed zVariables. Refer to the CDF User’s Guide for a description of the
reserve scheme used by the CDF library.

The arguments to CDFsetzVarReservePercent are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

percent The reserve percentage.

4.3.103.1. Example(s)

The following example sets the reserve percentage to 10 for zVariable “MY_VAR” in a CDF.

170

dim id as long CDF identifier.
Dim percent as integer ¢ The reserve percentage.
Dim status as integer

percent = 10
try

status = CDFsetzVarReservePercent (id, CDFgetVarNum (id, “MY_VAR”), percent)

catch ex as Exception

end try

4.3.104 CDFsetzVarsCacheSize

integer CDFsetzVarsCacheSize(out -- Completion status code.
id as long, ‘ in-- CDF identifier.
numBuffers as integer) ‘ in -- Number of cache buffers.

CDFsetzVarsCacheSize specifies the number of cache buffers to be used for all of the zVariable files in a CDF. This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library.
The arguments to CDFsetzVarsCacheSize are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to

CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numBuffers The number of buffers.

4.3.104.1. Example(s)

The following example sets the number of cache buffers to 10 for all zVariables in a CDF.

dim id as long CDF identifier.
Dim numBuffers as integer ¢ The number of cache buffers.
.dim status as integer

numBuffers = 10
try

status = CDFsetzVarsCacheSize (id, numBuffers)

171

catch ex as Exception

end try

4.3.105 CDFsetzVarSeqPos

integer CDFsetzVarSeqPos(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

dim recNum as integer, in -- Record number.

indices as integer as integer()) in -- Indices in a record.

CDFsetzVarSeqPos specifies the current sequential value (position) for sequential access for the specified zVariable in
a CDF. Note that a current sequential value is maintained for each zVariable individually. Use CDFgetzVarSeqPos
method to get the current sequential value.

The arguments to CDFsetzVarSeqPos are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
recNum The zVariable record number.
indices The dimension indices. Each element of indices receives the corresponding dimension

index. For 0-dimensional zVariable, this argument is ignored, but must be presented.

4.3.105.1. Example(s)

The following example sets the current sequential value to the first value element in record number 2 for a zVariable, a
2-dimensional variable, in a CDF.

dim id as long CDF identifier.

dim varNum as integer ¢ The variable number.
Dim recNum as integer The record number.
Dim indices(2) as integer The indices.

3

3

recNum = 2
indices(0) =0
indices(1) =0
try
status = CDFsetzVarSeqPos (id, varNum, recNum, indices)

172

catch ex as Exception

end try

4.3.106 CDFsetzVarSparseRecords

integer CDFsetzVarSparseRecords(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- The variable number.
sRecordsType as integer) in -- The sparse records type.

CDFsetzVarSparseRecords specifies the sparse records type of the specified zVariable in a CDF. Refer to Section
2.12.1 for the description of sparse records.
The arguments to CDFsetzVarSparseRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

sRecordsType The sparse records type.

4.3.106.1. Example(s)

The following example sets the sparse records type to PAD _SPARSERECORDS from its original type for zVariable
“MY_VAR” in a CDF.

dim id as long CDF identifier.
dim sRecordsType as integer ¢ The sparse records type.
Dim status as integer.
sRecordsType = PAD_ SPARSERECORDS
try
status = CDFsetzVarSparseRecords (id, CDFgetVarNum (id, “MY_VAR?”), sRecordsType)

catch ex as Exception

end try

173

4.3.107 CDFvarClose’

3

integer CDFvarClose(out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varNum as integer) ‘ in -- rVariable number.

CDFvarClose closes the specified rVariable file from a multi-file format CDF. The variable's cache buffers are flushed
before the variable's open file is closed. However, the CDF file is still open.

NOTE: You must close all open variable files to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the
CDF's cache buffers are left unflushed.

The arguments to CDFclose are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

varNum The variable number for the open rVariable’s file. This identifier must have been initialized by a call
to CDFgetVarNum.

4.3.107.1. Example(s)

The following example will close an open rVariable in a multi-file CDF.

dim id as long ¢ CDF identifier.
dim status as integer ‘ Returned status code.
try

status = CDFvarClose (id, CDFvarNum (id, “Flux”))
catch ex as Exception

end try

4.3.108 CDFvarCreate'’

3

integer CDFvarCreate(out -- Completion status code.

? A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFcloserVar is the preferred
function for it.

' A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFcreaterVar is the preferred
function for it.

174

id as long,

varName as string,
dataType as integer,
numElements as integer,
recVariance as integer,
dimVariances as integer(),
varNum as integer)

in -- CDF identifier.
in -- rVariable name.
in -- Data type.

 in -- Number of elements (of the data type).
in -- Record variance.

in -- Dimension variances.

out -- rVariable number.

CDFvarCreate is used to create a new rVariable in a CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDFvarCreate are defined as follows:

id

varName

dataType

numElements

recVariance

dimVariances

varNum

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

The name of the rVariable to create. This may be at most CDF VAR NAME LEN256
characters. Variable names are case-sensitive.

The data type of the new rVariable. Specify one of the data types defined in Section 2.6.

The number of elements of the data type at each value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string (each
value consists of the entire string). For all other data types this must always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The rVariable's record variance. Specify one of the variances defined in Section 2.10.

The rVariable's dimension variances. Each element of dimVariances specifies the
corresponding dimension variance. For each dimension specify one of the variances
defined in Section 2.10. For 0-dimensional rVariables this argument is ignored (but must
be present).

The number assigned to the new rVariable. This number must be used in subsequent
CDF function calls when referring to this rVariable. An existing rVariable's number may
be determined with the CDFvarNum or CDFgetVarNum function.

4.3.108.1. Example(s)

The following example will create several rVariables in a 2-dimensional CDF.

dim id as long
dim stats as integer

¢ CDF 1identifier.
Returned status code.

dim EPOCHrecVary as integer = VARY ¢ EPOCH record variance.
Dim LATrecVary as integer = NOVARY ¢ LAT record variance.

Dim LONrecVary as integer = NOVARY ¢ LON record variance.

Dim TMPrecVary as integer = VARY ¢ TMP record variance.

Dim EPOCHdimVarys() as integer = {NOVARY,NOVARY} * EPOCH dimension variances.
Dim LATdimVarys() as integer = {VARY,VARY} ¢ LAT dimension variances.

175

Dim LONdimVarys() as integer = {VARY,VARY} ¢ LON dimension variances.

Dim TMPdimVarys() as integer = {VARY,VARY} ¢ TMP dimension variances.
Dim EPOCHvarNum as integer * EPOCH zVariable number.
Dim LATvarNum as integer * LAT zVariable number.
Dim LONvarNum as integer * LON zVariable number.
Dim TMPvarNum as integer ¢ TMP zVariable number.
try

status = CDFvarCreate (id, "EPOCH", CDF_EPOCH, 1, _
EPOCHrecVary, EPOCHdimVarys, EPOCHvarNum)

status = CDFvarCreate (id, "LATITUDE", CDF INT2, 1,
LATrecVary, LATdimVarys, LATvarNum)

status = CDFvarCreate (id, "INTITUDE", CDF_INT2, 1, _
LONrecVary, LONdimVarys, LONvarNum)

status = CDFvarCreate (id, "TEMPERATURE", CDF_REALA4, 1, _
TMPrecVary, TMPdimVarys, TMPvarNum)
catch ex as Exception

end try

4.3.109 CDFvarGet'!

integer CDFvarGet(out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, in -- rVariable number.

dim recNum as integer, in -- Record number.

indices as integer(), in -- Dimension indices.

value as TYPE) ¢ out-- Value.

TYPE -- VB value/string type or object

CDFvarGet is used to read a single value from an rVariable.

The arguments to CDFvarGet are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

varNum The rVariable number from which to read data.
recNum The record number at which to read.
indices The dimension indices within the record.

' A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFgetrVarData is the preferred
function for it.

176

value The data value read. This buffer must be large enough to hold the value.

4.3.109.1. Example(s)

The following example returns two data values, the first and the fifth element, in Record 0 from an rVariable named
MY VAR, a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF. The first get operation passes
the value pointer, while the second operation uses “out” argument modifier.

dim id as long CDF identifier.

dim recNum as integer ¢ The record number.
dim varNum as integer The variable number.
Dim indices(2) as integer The dimension indices.
Dim valuel as double, value2 as double The data values.

Dim status as integer.

3
3

3

try
varNum = CDFvarNum (id, “MY_VAR”)
recNum = 0
indices(0) =0
indices(1) =0
status = CDFvarGet (id, varNum, recNum, indices, valuel)
indices(0) =1
indices(1) =1
object value2o
status = CDFvarGet (id, varNum, recNum, indices, value20)
value2 = value2o0
catch ex as Exception

end try

4.3.110 CDFvarHyperGet'’

integer CDFvarHyperGet(out -- Completion status code.

id as long, ‘ in-- CDF identifier.
varNum as integer, ‘ in -- rVariable number.
recStart as integer, ¢ in -- Starting record number.

in -- Number of records.

in -- Subsampling interval between records.
indices as integer(), in -- Dimension indices of starting value.

counts as integer(), in -- Number of values along each dimension.
intervals as integer(), ‘ in -- Subsampling intervals along each dimension.

values as TYPE) out-- Values.

recCount as integer,
recInterval as integer,

'2 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFhyperGetrVarData is the
preferred function for it.

177

* TYPE -- VB value/string type or object

CDFvarHyperGet is used to fill a buffer of one or more values from the specified rVariable. It is important to know the
variable majority of the CDF before using CDFvarHyperGet because the values placed into the buffer will be in that
majority. CDFinquire can be used to determine the default variable majority of a CDF distribution. The Concepts
chapter in the CDF User's Guide describes the variable majorities. Note: you need to provide dummy arrays, with at
least one (1) element, for indices, counts and intervals for scalar variables.

4.3.110.1. Example(s)

The following example will read an entire record of data from an rVariable. The CDF’s rVariables are 3-dimensional
with sizes (180,91,10) and CDF’s variable majority is ROW_MAJOR. For the rVariable the record variance is VARY,
the dimension variances are {VARY,VARY,VARY}, and the data type is CDF_REAL4. This example is similar to the
example provided for CDFvarGet except that it uses a single call to CDFvarHyperGet rather than numerous calls to
CDFvarGet.

dim id as long ¢ CDF identifier.
Dim status as integer Returned status code.
Dim tmp(,,) as single Temperature values.
Dim varN as integer rVariable number.
Dim recStart as integer = 13 Record number.

Dim recCount as integer = 1 Record counts.

Dim reclnterval as integer = 1 Record interval.

Dim indices() as integer = {0,0,0} Dimension indices.
Dim counts() as integer = {180,91,10} ¢ Dimension counts.
Dim intervals() as integer = {1,1,1} Dimension intervals.

try

varN = CDFgetVarNum (id, "Temperature")

status = CDFvarHyperGet (id, varN, recStart, recCount, recInterval, indices, counts, intervals, tmp)
catch ex as Exception
end try

Note that if the CDF's variable majority had been COLUMN_MAJOR, the tmp array would have been declared simple
type of tmp(10,91,180) for proper indexing.

4.3.111 CDFvarHyperPut"

3

integer CDFvarHyperPut(out -- Completion status code.

" A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFhyperPutrVarData is the
preferred function for it.

178

in -- CDF identifier.

varNum as integer, in -- rVariable number.

recStart as integer, in -- Starting record number.

recCount as integer, ‘ in -- Number of records.

recInterval as integer, in -- Interval between records.

indices as integer(), in -- Dimension indices of starting value.

counts as integer(), in -- Number of values along each dimension.
intervals as integer(), in -- Interval between values along each dimension.
buffer as TYPE) ‘ in -- Buffer of values.

TYPE -- VB value/string type (likely an array)

id as long,

CDFvarHyperPut is used to write one or more values from the data holding buffer to the specified rVariable. It is
important to know the variable majority of the CDF before using this routine because the values in the buffer to be
written must be in the same majority. CDFinquire can be used to determine the default variable majority of a CDF
distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities. Note: you need to
provide dummy arrays, with at least one (1) element, for indices, counts and intervals for scalar variables.

4.3.111.1. Example(s)

The following example writes values to the rVariable LATITUDE of a CDF that is an 2-dimensional array with
dimension sizes (360,181). For LATITUDE the record variance is NOVARY, the dimension variances are
{NOVARY,VARY}, and the data type is CDF_INT2. This example is similar to the CDFvarPut example except that it
uses a single call to CDFvarHyperPut rather than numerous calls to CDFvarPut.

dim id as long ¢ CDF identifier.
Dim status as integer Returned status code.
Dim i as integer Latitude value.

Dim lats(181) as short ¢ Buffer of latitude values.
Dim varN as integer rVariable number.
Dim recStart as integer = 0 Record number.

Dim recCount as integer = 1 Record counts.

Dim reclnterval as integer = 1 Record interval.

Dim indices()as integer = {0,0} Dimension indices.
Dim counts() as integer = {1,181} Dimension counts.
Dim intervals() as integer = {1,1} Dimension intervals.

try
varN = CDFvarNum (id, "LATITUDE")
fori= -90 to 90
lats(90+i) = CType(i, short)
next lat
status = CDFvarHyperPut (id, varN, recStart, recCount, recInterval, indices, counts, intervals, lats)

catch ex as Exception

end try

179

4.3.112 CDFvarIlnquire

integer CDFvarlnquire(
id as long,

varNum as integer,
varName as string,
dataType as integer ,
numElements as integer,
recVariance as integer,

dimVariances as integer())

out -- Completion status code.

¢ in -- CDF identifier.

in -- rVariable number.

out -- rVariable name.

out -- Data type.

out -- Number of elements (of the data type).
out -- Record variance.

out -- Dimension variances.

CDFvarlnquire is used to inquire about the specified rVariable. This method would normally be used before reading
rVariable values (with CDFvarGet or CDFvarHyperGet) to determine the data type and number of elements (of that

data type).

The arguments to CDFvarlnquire are defined as follows:

id

varNum

varName
dataType

numElements

recVariance

dimVariances

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

The number of the rVariable to inquire. This number may be determined with a call to
CDFvarNum (see Section 4.3.113).

The rVariable's name.

The data type of the rVariable. The data types are defined in Section 2.6.

The number of elements of the data type at each rVariable value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The record variance. The record variances are defined in Section 2.10.

The dimension variances. Each element of dimVariances receives the corresponding

dimension variance. The dimension variances are defined in Section 2.10. For 0-
dimensional rVariables this argument is ignored (but a placeholder is necessary).

4.3.112.1. Example(s)

The following example returns about an rVariable named HEAT FLUX in a CDF. Note that the rVariable name
returned by CDFvarlnquire will be the same as that passed in to CDFgetVarNum.

dim id as long
Dim status as integer

¢ CDF 1identifier.
¢ Returned status code.

180

rVariable name.

Data type of the rVariable.

Dim numElems as integer Number of elements (of data type).

Dim recVary as integer Record variance.

Dim dimVarys(CDF_MAX DIMS) as integer ‘ Dimension variances (allocate to allow the
maximum number of dimensions).

Dim varName as string
Dim dataType as integer

try
status = CDFvarlnquire (id, CDFgetVarNum (id,"HEAT FLUX"), varName, dataType,
numElems, recVary, dimVarys)

catch ex as Exception

end try

4.3.113 CDFvarNum'*

3

integer CDFvarNum(out -- Variable number.
id as long, ‘ in-- CDF identifier.
varName as string) ‘ in -- Variable name.

CDFvarNum is used to determine the number associated with a given variable name. If the variable is found,
CDFvarNum returns its variable number - which will be equal to or greater than zero (0). If an error occurs (e.g., the
variable does not exist in the CDF), an error code (of type Int) is returned. Error codes are less than zero (0). The
returned variable number should be used in the functions of the same variable type, rVariable or zVariable. If it is an
rVariable, functions dealing with rVariables should be used. Similarly, functions for zVariables should be used for
zVariables.

The arguments to CDFvarNum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

varName The name of the variable to search. This may be at most CDF_ VAR NAME LEN256
characters. Variable names are case-sensitive.

4.3.113.1. Example(s)

In the following example CDFvarNum is used as an embedded function call when inquiring about an rVariable.

dim id as long ¢ CDF identifier.
dim status as integer ‘ Returned status code.

'* A legacy CDF function. It used to handle only rVariables. It has been extended to include zVariables. While it is still
available in V3.1, CDFgetVarNum is the preferred function for it.

181

dim varName as string ¢ Variable name.

dim dataType as integer ¢ Data type of the rVariable.

dim numElements integer * Number of elements (of the data type).
dim recVariance as integer ¢ Record variance.

dim dimVariances(CDF_MAX DIMS) as integer ¢ Dimension variances.

try

status = CDFvarlnquire (id, CDFvarNum (id,"LATITUDE"), varName, dataType,
numElements, recVariance, dimVariances)

catch ex as Exception
end try

In this example the rVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDFgetVarNum would have returned an error code. Passing that error code to CDFvarlnquire as an rVariable
number would have resulted in CDFvarlnquire also returning an error code. Also note that the name written into
varName is already known (LATITUDE). In some cases the rVariable names will be unknown - CDFvarlnquire would
be used to determine them. CDFvarlnquire is described in Section 4.3.112.

4.3.114 CDFvarPut"

integer CDFvarPut(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varNum as integer, in -- rVariable number.
recNum as integer, in -- Record number.
indices as integer(), in -- Dimension indices.
value as TYPE) ¢ in -- Value.
* TYPE -- VB value/string type

CDFvarPut writes a single data value to an rVariable. CDFvarPut may be used to write more than one value with a
single call.

The arguments to CDFvarPut are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

varNum The rVariable number to which to write. This number may be determined with a call to
CDFvarNum.

recNum The record number at which to write.

indices The dimension indices within the specified record at which to write. Each element of

indices specifies the corresponding dimension index. For 0-dimensional variables, this
argument is ignored (but must be present).

' A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFputrVarData is the preferred
function for it.

182

value The data value to write.

4.3.114.1. Example(s)

The following example will write two data values (1 and 5" elements) of a 2-dimensional rVariable (2 by 3) named
MY _ VAR to record number 0.

dim id as long CDF identifier.

dim varNum as integer ‘ rVariable number.

dim recNum as integer The record number.
Dim indices(2) as integer The dimension indices.
Dim valuel as double, value2 as double The data values.

3
3

3

try
varNum = CDFgetVarNum (id, “MY_VAR?”)
recNum = 0
indices(0) =0
indices(1) =0
valuel = 10.1
status = CDFvarPut (id, varNum, recNum, indices, valuel)
indices(0) =1
indices(1) =1
value2 =20.2
status = CDFvarPut (id, varNum, recNum, indices, value2)

catch ex as Exception

end try

4.3.115 CDFvarRename'®

integer CDFvarRename(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- rVariable number.
varName as string) in -- New name.

CDFvarRename is used to rename an existing rVariable. A variable (rVariable or zVariable) name must be unique.

The arguments to CDFvarRename are defined as follows:

'® A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFrenamerVar is the preferred
function for it.

183

id

varNum

varName

The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

The rVariable number to rename. This number may be determined with a call to
CDFvarNum.

The new rVariable name. The maximum length of the new name is
CDF VAR NAME LEN256 characters. Variable names are case-sensitive.

4.3.115.1. Example(s)

In the following example

the rVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if

CDFvarNum returns a value less than zero (0) then that value is not an rVariable number but rather a warning/error

code.

dim id as long
Dim status as integer
Dim varNum as integer

try

¢ CDF 1identifier.
¢ Returned status code.
¢ rVariable number.

varNum = CDFvarNum (id, "TEMPERATURE")

H
catch ex as Exception

end try

4.4 Attributes/Entries

This section provides functions that are related to CDF attributes or attribute entries. An attribute is identified by its
name or an number in the CDF. Before you can perform any operation on an attribute or attribute entry, the CDF in
which it resides must be opened.

4.4.1 CDFattrC

integer CDFattrCreate(
id as long,

attrName as string,
attrScope as integer,
attrNum as integer)

reate17

out -- Completion status code.
‘ in -- CDF identifier.

in -- Attribute name.

in -- Scope of attribute.

out -- Attribute number.

17 Same as CDFcreateAttr.

184

CDFattrCreate creates an attribute in the specified CDF. An attribute with the same name must not already exist in the
CDF.

The arguments to CDFattrCreate are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

attrName The name of the attribute to create. This may be at most CDF_ ATTR NAME LEN256
characters. Attribute names are case-sensitive.

attrScope The scope of the new attribute. Specify one of the scopes described in Section 2.13.

attrNum The number assigned to the new attribute. This number must be used in subsequent CDF

function calls when referring to this attribute. An existing attribute's number may be
determined with the CDFgetAttrNum function.

4.4.1.1. Example(s)

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

dim id as long ¢ CDF identifier.

Dim status as integer ‘ Returned status code.

Dim UNITSattrName as string = "Units" ¢ Name of "Units" attribute.
Dim UNITSattrNum as integer ¢ "Units" attribute number.
Dim TITLEattrNum as integer ¢ "TITLE" attribute number.
Dim TITLEattrScope as integer = GLOBAL SCOPE ¢ "TITLE" attribute scope.
try

status = CDFattrCreate (id, "TITLE", TITLEattrScope, TITLEattrNum)
status = CDFattrCreate (id, UNITSattrName, VARIABLE SCOPE, UNITSattrnum)

catch ex as Exception

end try

4.4.2 CDFattrEntrylnquire

3

integer CDFattrEntryInquire(out -- Completion status code.

185

id as long,

attrNum as integer,
entryNum as integer,
dataType as integer,
numElements as integer)

‘ in -- CDF identifier.
¢ in -- Attribute number.
in -- Entry number.
out -- Data type.
out -- Number of elements (of the data type).

CDFattrEntryInquire is used to inquire about a specific attribute entry. To inquire about the attribute in general, use
CDFattrlnquire. CDFattrEntrylnquire would normally be called before calling CDFattrGet in order to determine the
data type and number of elements (of that data type) for an entry. This would be necessary to correctly allocate enough
memory to receive the value read by CDFattrGet.

The arguments to CDFattrEntryInquire are defined as follows:

id

attrNum

entryNum

dataType

NumElements

4.4.2.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

The attribute number for which to inquire an entry. This number may be determined
with a call to CDFattrNum (see Section 4.4.5).

The entry number to inquire. If the attribute is global in scope, this is simply the gEntry
number and has meaning only to the application. If the attribute is variable in scope, this
is the number of the associated rVariable (the rVariable being described in some way by
the rEntry).

The data type of the specified entry. The data types are defined in Section 2.6.
The number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

The following example returns each entry for an attribute. Note that entry numbers need not be consecutive - not
every entry number between zero (0) and the maximum entry number must exist. For this reason NO_SUCH_ENTRY
is an expected error code. Note also that if the attribute has variable scope, the entry numbers are actually rVariable

numbers.

dim id as long

Dim status as integer
Dim attrN as integer

Dim entryN as integer
Dim attrName as string
Dim attrScope as integer
Dim maxEntry as integer
Dim dataType as integer
Dim numElems as integer

try

¢ CDF identifier.

 Returned status code.

¢ attribute number.

Entry number.

¢ attribute name.

¢ attribute scope.

¢ Maximum entry number used.

¢ Data type.

‘ Number of elements (of the data type).

3

186

attrN = CDFgetAttrNum (id, "TMP")
status = CDFattrInquire (id, attrN, attrName, attrScope, maxEntry)

for entryN = 0 to maxEntry
status = CDFattrEntrylnquire (id, attrN, entryN, dataType, numElems)

next entryN

}

catch ex as Exception

end try

4.43 CDFattrGet™

integer CDFattrGet(

id as long,

integer attrNum,
integer entryNum,
value as TYPE)

out -- Completion status code.

‘ in -- CDF identifier.

in -- Attribute number.

in -- Entry number.

out -- Attribute entry value.

TYPE -- VB value/string type or object

CDFattrGet is used to read an attribute entry from a CDF. In most cases it will be necessary to call
CDFattrEntryInquire before calling CDFattrGet in order to determine the data type and number of elements (of that

data type) for the entry.

The arguments to CDFattrGet are defined as follows:

id

attrNum

entryNum

value

The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

The attribute number. This number may be determined with a call to CDFattrNum (Section
4.4.5).

The entry number. If the attribute is global in scope, this is simply the gEntry number and
has meaning only to the application. If the attribute is variable in scope, this is the number
of the associated rVariable (the rVariable being described in some way by the rEntry).

The value read. This buffer must be large enough to hold the value. The method
CDFattrEntrylnquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into memory at
address value.

'® A legacy CDF function. While it is still available in V3.1, CDFgetAttrgEntry or CDFgetAttrrEntry is the preferred

function for it.

187

4.4.3.1. Example(s)

The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES LVL
rVariable (but only if the data type is CDF_CHAR).

dim id as long ¢ CDF identifier.

dim status as integer ‘ Returned status code.

Dim attrN as integer Attribute number.

Dim entryN as integer Entry number.

Dim dataType as integer Data type.

Dim numElems as integer Number of elements (of data type).

3
3
3

3

try
attrN = CDFattrNum (id, "UNITS")
entryN = CDFvarNum (id, "PRES LVL") * The rEntry number is the rVariable number.

status = CDFattrEntrylnquire (id, attrN, entryN, dataType, numElems)

if dataType = CDF_CHAR then
dim buffer as string
status = CDFattrGet (id, attrN, entryN, buffer)
end if
catch ex as Exception

end try

4.4.4 CDFattrInquire19

integer CDFattrInquire(out -- Completion status code.

id as long, ‘ in-- CDF identifier.

attrNum as integer, in -- Attribute number.

attrName as string, out -- Attribute name.

attrScope as integer, out -- Attribute scope.

maxEntry as integer) out -- Maximum gEntry/rEntry number.

CDFattrinquire is used to inquire about the specified attribute. To inquire about a specific attribute entry, use
CDFattrEntryInquire.
The arguments to CDFattrInquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

' A legacy function. While it is still available in V3.1, CDFinquireAttr is the preferred function for it.

188

attrNum The number of the attribute to inquire. This number may be determined with a call to
CDFattrNum (see Section 4.4.5).

attrName The attribute's name. This string length is limited to CDF_ ATTR NAME LEN256.
attrScope The scope of the attribute. Attribute scopes are defined in Section 2.13.
maxEntry For gAttributes this is the maximum gEntry number used. For vAttributes this is the

maximum rEntry number used. In either case this may not correspond with the number of
entries (if some entry numbers were not used). If no entries exist for the attribute, then a

value of -1 will be passed back.

4.4.4.1. Example(s)

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first

determined using the method CDFinquire. Note that attribute numbers start at zero (0) and are consecutive.

dim id as long

Dim status as integer
Dim numDims as integer
Dim dimSizes() as integer

Dim encoding as integer
Dim majority as integer
Dim maxRec as integer
Dim numVars as integer
Dim numAttrs as integer
Dim attrN as integer
Dim attrName as string
Dim attrScope as integer
Dim maxEntry as integer

try

CDF identifier.

Returned status code.

Number of dimensions.

Dimension sizes (allocate to allow the
maximum number of dimensions).

Data encoding.

Variable majority.

Maximum record number in CDF.

Number of variables in CDF.

Number of attributes in CDF.

attribute number.

attribute name.

attribute scope.

Maximum entry number.

status = CDFinquire (id, numDims, dimSizes, encoding, majority, maxRec, numVars,

numaAttrs)
for attrN = 0 to (numAttrs-1)

status = CDFattrInquire (id, attrN, attrName, attrScope, maxEntry)

next attrN
catch ex as Exception

end try

189

4.4.5 CDFattrNum?*’

integer CDFattrNum(‘ out -- attribute number.
id as long, ‘in-- CDF id
attrName as string) ‘ in -- Attribute name

CDFattrNum is used to determine the attribute number associated with a given attribute name. If the attribute is found,
CDFattrNum returns its number - which will be equal to or greater than zero (0). If an error occurs (e.g., the attribute
name does not exist in the CDF), an error code (of type Int) is returned. Error codes are less than zero (0).

The arguments to CDFattrNum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

attrName The name of the attribute for which to search. This may be at most
CDF_ATTR NAME LEN256 characters. Attribute names are case-sensitive.

CDFattrNum may be used as an embedded function call when an attribute number is needed.

4.4.5.1. Example(s)

In the following example the attribute named pressure will be renamed to PRESSURE with CDFattrNum being used as
an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to CDFattrNum would
have returned an error code. Passing that error code to CDFattrRename as an attribute number would have resulted in
CDFattrRename also returning an error code.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
try

status = CDFattrRename (id, CDFattrNum (id,"pressure"), "PRESSURE")
catch ex as Exception

end try

4.4.6 CDFattrPut

integer CDFattrPut(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

%% A legacy CDF function. While it is still available in V3.1, CDFgetAttrNum is the preferred function for it.

190

integer attrNum,
integer entryNum,
integer dataType,
integer numElements,
value as TYPE)

in -- Attribute number.

in -- Entry number.

in -- Data type of this entry.

in -- Number of elements (of the data type).
in -- Attribute entry value.

* TYPE -- VB value/string type

CDFattrPut is used to write an entry to a global or rVariable attribute in a CDF. The entry may or may not already
exist. If it does exist, it is overwritten. The data type and number of elements (of that data type) may be changed when

overwriting an existing entry.

The arguments to CDFattrPut are defined as follows:

id

attrNum

entryNum

dataType

numElements

value

4.4.6.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

The attribute number. This number may be determined with a call to CDFgetAttrNum.

The entry number. If the attribute is global in scope, this is simply the gEntry number
and has meaning only to the application. If the attribute is variable in scope, this is the
number of the associated rVariable (the rVariable being described in some way by the
rEntry).

The data type of the specified entry. Specify one of the data types defined in Section
2.6.

The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address
value.

The following example writes two attribute entries. The first is to gEntry number zero (0) of the gAttribute TITLE.
The second is to the variable scope attribute VALIDs for the rEntry that corresponds to the rVariable TMP.

dim id as long
Dim status as integer

Dim TITLE LEN as integer = 10
Dim entryNum as integer

Dim numElements as integer

Dim title as string = "CDF title."
Dim TMPvalids() as short = {15,30}

entryNum = 0

CDF identifier.
Returned status code.
Entry string length.
Entry number.
Number of elements (of data type).
Value of TITLE attribute, entry number 0.
Value(s) of VALIDs attribute,
rEntry for rVariable TMP.

191

try
status = CDFattrPut (id, CDFgetAttrNum (id,"TITLE"), entryNum, CDF CHAR, TITLE LEN, title)

numElements = 2
status = CDFattrPut (id, CDFgetAttrNum (id,"VALIDs"), CDFgetVarNum (id,"TMP"), _
CDF_INT2, numElements, TMPvalids)

catch ex as Exception

end try

4.4.7 CDFattrRename’!

integer CDFattrRename(out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, in -- Attribute number.
attrName as string) in -- New attribute name.

CDFattrRename is used to rename an existing attribute. An attribute with the new name must not already exist in the
CDF.
The arguments to CDFattrRename are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

attrNum The number of the attribute to rename. This number may be determined with a call to
CDFattrNum (see Section 4.4.5).

attrName The new attribute name. This may be at most CDF_ ATTR NAME LEN256 characters.
Attribute names are case-sensitive.

4.4.7.1. Example(s)

In the following example the attribute named LAT is renamed to LATITUDE.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
try

status = CDFattrRename (id, CDFgetAttrNum (id,"LAT"), "LATITUDE")

! A legacy CDF function. While it is still available in V3.1, CDFrenameAttr is the preferred function for it.

192

catch ex as Exception

end try

4.4.8 CDFconfirmAttrExistence

integer CDFconfirmA ttrExistence(‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrName as string) ‘ in -- Attribute name.

CDFconfirmAttrExistence confirms whether an attribute exists for the given attribute name in a CDF. If the attribute
doesn’t exist, the informational status code, NO_SUCH_ATTR, is returned and no exception is thrown.

The arguments to CDFconfirmAttrExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrName The attribute name to check.

4.4.8.1. Example(s)

The following example checks whether an attribute by the name of “ATTR _NAME1” is in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
try

status = CDFconfirmAttrExistence (id, “ATTR_NAME!"”)
if status = NO_SUCH_ATTR then

end if
catch ex as Exception

end try

193

4.49 CDFconfirmgEntryExistence

integer CDFconfirmgEntryExistence(
id as long,

attrNum as integer,

entryNum as integer)

out -- Completion status code.
in -- CDF identifier.

in -- Attribute number.

in -- gEntry number.

CDFconfirmgEntryExistence confirms the existence of the specified entry (gEentry), in a global attribute from a CDF.
If the gEntry does not exist, the informational status code NO_SUCH_ENTRY will be returned and no exception is

thrown.
The arguments to CDFconfirmgEntryExistence are defined as follows:

id
CDFcreateCDF) or CDFopenCDF.

attrNum The (global) attribute number.
entryNum The gEntry number.

4.4.9.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or

The following example checks the existence of a gEntry numbered 1 for attribute “MY_ATTR” in a CDF.

3

dim id as long

Dim status as integer
dim attrNum as integer
Dim entryNum as integer

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = 1

status = CDFconfirmgEntryExistence (id, attrNum, entryNum)
if status = NO_SUCH_ENTRY then UserStatusHandler (status)

4.4.10 CDFconfirmrEntryExistence

integer CDFconfirmrEntryExistence(
id as long,

attrNum as integer,

entryNum as integer)

194

CDF identifier.

¢ Returned status code.
¢ Attribute number.

gEntry number.

out -- Completion status code.
in -- CDF identifier.

in -- Attribute number.

in -- rEntry number.

CDFconfirmrEntryExistence confirms the existence of the specified entry (rEntry), corresponding to an rVariable, in a
variable attribute from a CDF. If the rEntry does not exist, the informational status code NO_SUCH_ENTRY will be
returned and no exception is thrown.

The arguments to CDFconfirmrEntryExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The variable attribute number.

entryNum The rEntry number.

4.4.10.1. Example(s)

The following example checks the existence of an rEntry, corresponding to rVariable “MY_VAR”, for attribute
“MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

dim status as integer ‘ Returned status code.
dim attrNum as integer Attribute number.
dim entryNum as integer rEntry number.

3

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFconfirmrEntryExistence (id, attrNum, entryNum)
if status = NO_SUCH_ENTRY then UserStatusHandler (status)

catch ex as Exception

end try

4.4.11 CDFconfirmzEntryExistence

integer CDFconfirmzEntryExistence(out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, in -- Attribute number.
entryNum as integer) in -- zEntry number.

195

CDFconfirmzEntryExistence confirms the existence of the specified entry (zEntry), corresponding to a zVariable, in a
variable attribute from a CDF. If the zEntry does not exist, the informational status code NO_SUCH_ENTRY will be
returned and no exception is thrown.

The arguments to CDFconfirmzEntryExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The (variable) attribute number.

entryNum The zEntry number.

4.4.11.1. Example(s)

The following example checks the existence of the zEntry corresponding to zVariable “MY VAR for the variable
attribute “MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
dim varNum as integer Attribute number.
dim entryNum as integer zEntry number.

3

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFconfirmzEntryExistence (id, attrNum, entryNum)
if status = NO_SUCH_ENTRY then UserStatusHandler (status)

catch ex as Exception

end try

4.4.12 CDFcreateAttr

integer CDFcreate Attr(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrName as string, in -- Attribute name.
attrScope as integer, in -- Scope of attribute.
attrNum as integer) out -- Attribute number.

CDFcreateAttr creates an attribute with the specified scope in a CDF. It is identical to the method CDFattrCreate. An
attribute with the same name must not already exist in the CDF.

196

The arguments to CDFcreateAttr are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrName The name of the attribute to create. This may be at most CDF_ ATTR NAME LEN256
characters. Attribute names are case-sensitive.

attrScope The scope of the new attribute. Specify one of the scopes described in Section 2.13.

attrNum The number assigned to the new attribute. This number must be used in subsequent CDF

function calls when referring to this attribute. An existing attribute's number may be
determined with the CDFgetAttrNum function.

4.4.12.1. Example(s)

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

dim id as long id ¢ CDF identifier.

Dim status as integer ‘ Returned status code.

Dim UNITSattrName as string = "Units" * Name of "Units" attribute.
Dim UNITSattrNum as integer ¢ "Units" attribute number.
Dim TITLEattrNum as integer ¢ "TITLE" attribute number.
Dim TITLEattrScope as integer = GLOBAL SCOPE ¢ "TITLE" attribute scope.
try

status = CDFcreateAttr (id, "TITLE", TITLEattrScope, TITLEattrNum)
status = CDFcreateAttr (id, UNITSattrName, VARIABLE SCOPE, UNITSattrnum)

catch ex as Exception

end try

4.4.13 CDFdeleteAttr

integer CDFdeleteAttr(* out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer) ‘ in -- Attribute identifier.

CDFdeleteAttr deletes the specified attribute from a CDF.

The arguments to CDFdeleteAttr are defined as follows:

197

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number to be deleted.

4.4.13.1. Example(s)

The following example deletes an existing attribute named MY ATTR from a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
dim attrNum as integer ‘ Attribute number.
try

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFdeleteAttr (id, attrNum)

catch ex as Exception

end try

4.4.14 CDFdeleteAttrgEntry

integer CDFdeleteAttrgEntry(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.

entryNum as integer in -- gEntry identifier.
ry g gkbntry

CDFdeleteAttrgEntry deletes the specified entry (gEntry) in a global attribute from a CDF.
The arguments to CDFdeleteAttrgEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The global attribute number from which to delete an attribute entry.

entryNum The gEntry number to delete.

198

4.4.14.1. Example(s)

The following example deletes the entry number 5 from an existing global attribute MY ATTR in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
dim varNum as integer Attribute number.
dim entryNum as integer gEntry number.

3

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = 5
status = CDFdeleteAttrgEntry (id, attrNum, entryNum)

catch ex as Exception

end try

4.4.15 CDFdeleteAttrrEntry

integer CDFdelete AttrrEntry(‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.

entryNum as integer) in -- rEntry identifier.

CDFdeleteAttrrEntry deletes the specified entry (rEntry), corresponding to an rVariable, in an (variable) attribute from
a CDF.

The arguments to CDFdeleteAttrrEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The (variable) attribute number.

entryNum The rEntry number.

4.4.15.1. Example(s)

The following example deletes the entry corresponding to rVariable “MY_VARI1” from the variable attribute
“MY_ATTR” in a CDF.

199

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
dim varNum as integer ‘ Attribute number.
dim entryNum as integer ‘ rEntry number.

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VARI1”)
status = CDFdeleteAttrrEntry (id, attrNum, entryNum)

catch ex as Exception

end try

4.4.16 CDFdeleteAttrzEntry

integer CDFdelete AttrzEntry(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.

entryNum as integer) in -- zEntry identifier.

CDFdeleteAttrzEntry deletes the specified entry (zEntry), corresponding to a zVariable, in an (variable) attribute from a
CDF.

The arguments to CDFdeleteAttrzEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.

entryNum The zEntry number to be deleted that is the zVariable number.

4.4.16.1. Example(s)

The following example deletes the variable attribute entry named MY ATTR that is attached to the zVariable
MY _ VARI.

dim id as long ¢ CDF identifier.

200

Dim status as integer ‘ Returned status code.
dim attrNum as integer ¢ Attribute number.
dim entryNum as integer ¢ zEntry number.

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VAR1”)
status = CDFdeleteAttrzEntry (id, attrNum, entryNum)

catch ex as Exception

end try

4.4.17 CDFgetAttrgEntry

integer CDFgetAttrgEntry (‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.

entryNum as integer, in -- gEntry number.
value as TYPE) ‘ out -- gEntry data.
TYPE -- VB value/string type or object

This method is identical to the method CDFattrGet. CDFgetAttrgEntry is used to read a global attribute entry from a
CDF. In most cases it will be necessary to call CDFinquireAttrgEntry before calling CDFgetAttrgEntry in order to
determine the data type and number of elements (of that data type) for the entry.

The arguments to CDFgetAttrgEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number. This number may be determined with a call to CDFgetAttrNum.
entryNum The global attribute entry number.
value The value read. This buffer must be large enough to hold the value. The method

CDFattrEntrylnquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into the object.

4.4.17.1. Example(s)

The following example displays the value of the global attribute called HISTORY.

201

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.

Dim attrN as integer ‘ Attribute number.

Dim entryN as integer Entry number.

Dim dataType as integer Data type.

Dim numElems as integer Number of elements (of data type).
Dim buffer as Object Buffer to receive value.

try
attrN = CDFattrNum (id, "HISTORY")
entryN = 0
status = CDFinquireAttrgEntry (id, attrN, entryN, dataType, numElems)
status = CDFgetAttrgEntry (id, attrN, entryN, buffer)

if dataType = CDF_CHAR then
¢ buffer is a string

end if
catch ex as Exception

end try

4.4.18 CDFgetAttrgEntryDataType

integer CDFgetAttrgEntryDataType (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.
entryNum as integer, in -- gEntry number.
dataType as integer) out -- gEntry data type.

CDFgetAttrgEntryDataType returns the data type of the specified global attribute and gEntry number in a CDF. The
data types are described in Section 2.6.
The arguments to CDFgetAttrgEntryDataType are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The global attribute number.
entryNum The gEntry number.

dataType The data type of the gEntry.

202

4.4.18.1. Example(s)

The following example gets the data type for the gEntry numbered 2 from the global attribute “MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim attrNum as integer Attribute number.
dim entryNum as integer gEntry number.

dim dataType as integer gEntry data type.

3
3

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = 2
status = CDFgetAttrgEntryDataType (id, attrNum, entryNum, dataType)

catch ex as Exception

end try

4.4.19 CDFgetAttrgEntryNumElements

integer CDFgetAttrgEntryNumElements (out -- Completion status code.

id as long, ‘ in-- CDF identifier.

attrNum as integer, ‘ in -- Attribute identifier.
entryNum as integer, in -- gEntry number.

numElems as integer) out -- gEntry’s number of elements.

CDFgetAttrgEntryNumElements returns the number of elements of the specified global attribute and gentry number in
a CDF.
The arguments to CDFgetAttrgEntryNumElements are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the global attribute.
entryNum The gEntry number.

numElems The number of elements of the gEntry.

203

4.4.19.1. Example(s)

The following example gets the number of elements from the gEntry numbered 2 from the global attribute
“MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ‘ Returned status code.

dim attrNum as integer Attribute number.

dim entryNum as integer gEntry number.

dim numElements as integer gEntry’s number of elements.

3
3

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = 2
status = CDFgetAttrgEntryNumElements (id, attrNum, entryNum, numElements)

catch ex as Exception

end try

4.4.20 CDFgetAttrMaxgEntry

integer CDFgetAttrMaxgEntry (¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.

maxEntry as integer) out -- The last gEntry number.
ry g gkbntry

CDFgetAttrMaxgEntry returns the last entry number of the specified global attribute in a CDF.
The arguments to CDFgetAttrMaxgEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the global attribute.

maxEntry The last gEntry number.

4.4.20.1. Example(s)

The following example gets the last entry number from the global attribute “MY_ ATTR” in a CDF.

204

dim id as long ¢ CDF identifier.

Dim attrNum as integer ‘ Attribute number.
dim maxEntry as integer ¢ The last gEntry number.
try

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFgetAttrMaxgEntry (id, attrNum, maxEntry)

catch ex as Exception

end try

4.4.21 CDFgetAttrMaxrEntry

integer CDFgetAttrMaxrEntry (¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.

maxEntry as integer) out -- The maximum rEntry number.

CDFgetAttrMaxrEntry returns the last rEntry number (rVariable number) to which the given variable attribute is
attached.
The arguments to CDFgetAttrMaxrEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.

maxEntry The last rEntry number (rVariable number) to which attrNum is attached..

4.4.21.1. Example(s)

The following example gets the last entry, corresponding to the last rVariable number, from the variable attribute
“MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.

205

dim attrNum as integer ‘ Attribute number.
dim maxEntry as integer ¢ The last rEntry number.

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFgetAttrMaxrEntry (id, attrNum, maxEntry)

catch ex as Exception

end try

4.4.22 CDFgetAttrMaxzEntry

integer CDFgetAttrMaxzEntry (‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.

maxEntry as integer) out -- The maximum zEntry number.

CDFgetAttrMaxzEntry returns the last entry number, corresponding to the last zVariable number, to which the given
variable attribute is attached.
The arguments to CDFgetAttrMaxzEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.

maxEntry The last zEntry number (zVariable number) to which attrNum is attached..

4.4.22.1. Example(s)

The following example gets the last entry, corresponding to the last zVariable number, attached to the variable attribute
MY _ATTR in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ‘ Returned status code.
dim attrNum as integer Attribute number.

dim maxEntry as integer The last zEntry number

3

try

206

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFgetAttrMaxzEntry (id, attrNum, maxEntry)

catch ex as Exception

end try

4.4.23 CDFgetAttrName

integer CDFgetAttrName (¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.

attrName as string) out -- The attribute name.

CDFgetAttrName gets the name of the specified attribute (by its number) in a CDF.
The arguments to CDFgetAttrName are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the attribute.

attrName The name of the attribute.

4.4.23.1. Example(s)

The following example retrieves the name of the attribute number 2, if it exists, in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
dim attrNum as integer Attribute number.
Dim attrName as string The attribute name.

3

3

attrNum = 2
try

status = CDFgetAttrName (id, attrNum, attrName)
catch ex as Exception

end try

207

4.4.24 CDFgetAttrNum

integer CDFgetAttrNum (‘ out -- Attribute number.
id as long, ‘ in-- CDF identifier.
attrName as string) ‘ in -- The attribute name.

CDFgetAttrNum is used to determine the attribute number associated with a given attribute name. If the attribute is
found, CDFgetAttrNum returns its number - which will be equal to or greater than zero (0). If an error occurs (e.g., the
attribute name does not exist in the CDF), an error code (of type Int) is returned. Error codes are less than zero (0).

The arguments to CDFgetAttrNum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrName The name of the attribute for which to search. This may be at most
CDF _ATTR NAME LEN256 characters. Attribute names are case-sensitive.

CDFgetAttrNum may be used as an embedded function call when an attribute number is needed.

4.4.24.1. Example(s)

In the following example the attribute named pressure will be renamed to PRESSURE with CDFgetAttrNum being
used as an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to
CDFgetAttrNum would have returned an error code. Passing that error code to CDFattrRename as an attribute number
would have resulted in CDFattrRename also returning an error code.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
try

status = CDFrenameAttr (id, CDFgetAttrNum (id,"pressure"), "PRESSURE")
catch ex as Exception

end try

208

4.4.25 CDFgetAttrrEntry

integer CDFgetAttrrEntry (‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.
entryNum as integer, ‘¢ in -- Entry number.

value as TYPE) ¢ out -- Entry data.

* TYPE -- VB value/string type or object

This method is identical to the method CDFattrGet. CDFgetAttrrEntry is used to read an rVariable attribute entry from
a CDF. In most cases it will be necessary to call CDFattrEntrylnquire before calling CDFinquireAttrrEntry in order to
determine the data type and number of elements (of that data type) for the entry.

The arguments to CDFgetAttrrEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum The rVariable attribute entry number that is the rVariable number from which the attribute is
read.

value The entry value read. This buffer must be large enough to hold the value. The method

CDFattrEntrylnquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into memory at
address value.

4.4.25.1. Example(s)

The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES LVL
rVariable (but only if the data type is CDF_CHAR).

dim id as long id ¢ CDF identifier.

Dim status as integer ‘ Returned status code.

Dim attrN as integer Attribute number.

Dim entryN as integer Entry number.

Dim dataType as integer Data type.

Dim numElems as integer Number of elements (of data type).

3
3
3

3

try
attrtN = CDFattrNum (id, "UNITS")
entryN = CDFvarNum (id, "PRES LVL") ¢ The rEntry number is the rVariable number.
status = CDFinquireAttrrEntry (id, attrN, entryN, out dataType, out numElems)

if dataType = CDF_CHAR then
Dim buffer as string

209

status = CDFgetAttrrEntry (id, attrN, entryN, buffer)

end if .
catch ex as Exception

end try

4.4.26 CDFgetAttrrEntryDataType

integer CDFgetAttrrEntryDataType (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.
entryNum as integer, in -- rEntry number.
dataType as integer) out -- rEntry data type.

CDFgetAttrrEntryDataType returns the data type of the rEntry from an (variable) attribute in a CDF. The data types are
described in Section 2.6.
The arguments to CDFgetAttrrEntryDataType are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.
entryNum The rEntry number.

dataType The data type of the rEntry.

4.4.26.1. Example(s)

The following example gets the data type for the entry of rVariable “MY VARI1” in the (variable) attribute
“MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
dim attrNum as integer ‘ Attribute number.

3

rEntry number.
rEntry data type.

dim entryNum as integer
dim dataType as integer

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VAR1”)

210

status = CDFgetAttrrEntryDataType (id, attrNum, entryNum, dataType)

catch ex as Exception

end try

4.4.27 CDFgetAttrrEntryNumElements

integer CDFgetAttrrEntryNumElements (out -- Completion status code.

id as long, ‘ in-- CDF identifier.

attrNum as integer, ‘ in -- Attribute identifier.

startRec as integer, in -- rEntry number.

numElems as integer) out -- rEntry’s number of elements.

CDFgetAttrrEntryNumElements returns the number of elements of the rEntry from an (variable) attribute in a CDF.

The arguments to CDFgetAttrrEntryNumElements are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.
entryNum The rEntry number.

numElems The number of elements of the rEntry.

4.4.27.1. Example(s)

The following example gets the number of elements for the entry of rVariable “MY_ VARI1” in the (variable) attribute
“MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ‘ Returned status code.

dim attrNum as integer Attribute number.

dim entryNum as integer rEntry number.

dim numFElements as integer rEntry’s number of elements.

3
3

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VAR1”)

211

status = CDFgetAttrrEntryNumElements (id, attrNum, entryNum, numElements)

catch ex as Exception

end try

4.4.28 CDFgetAttrScope

integer CDFgetAttrScope (‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, in -- Attribute number.
attrScope as integer) out -- Attribute scope.

CDFgetAttrScope returns the attribute scope (GLOBAL SCOPE or VARIABLE SCOPE) of the specified attribute in
a CDF. Refer to Section 2.13 for the description of the attribute scopes.
The arguments to CDFgetAttrScope are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number.

attrScope The scope of the attribute.

4.4.28.1. Example(s)

The following example gets the scope of the attribute “MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
dim attrNum as integer Attribute number.
dim attrScope as integer Attribute scope.

3

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFgetAttrScope (id, attrNum, attrScope)

catch ex as Exception

end try

212

4.4.29 CDFgetAt

integer CDFgetAttrzEntry(
id as long,

attrNum as integer,
entryNum as integer,
value as TYPE)

trzEntry

out -- Completion status code.

‘ in -- CDF identifier.

in -- Variable attribute number.

in -- Entry number.

out -- Entry value.

* TYPE -- VB value/string type or object

CDFgetAttrzEntry is used to read zVariable’s attribute entry.. In most cases it will be necessary to call
CDFinquireAttrzEntry before calling this method in order to determine the data type and number of elements (of that
data type) for dynamical space allocation for the entry.

The arguments to CDFgetAttrzEntry are defined as follows:

id

attrNum

entryNum

value

4.4.29.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

The variable attribute number. This number may be determined with a call to
CDFgetAttrNum.

The variable attribute entry number that is the zVariable number from which the attribute
entry is read

The entry value read. This buffer must be large enough to hold the value. The method
CDFattrEntrylnquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into memory at
address value.

The following example displays the value of the UNITS attribute for the PRES LVL zVariable (but only if the data

type is CDF_CHAR).

dim id as long

Dim status as integer
Dim attrN as integer
Dim entryN as integer

Dim dataType as integer
Dim numElems as integer

try

¢ CDF identifier.

 Returned status code.

Attribute number.

Entry number.

Data type.

Number of elements (of data type).

3

3

3

3

attrtN = CDFgetAttrNum (id, "UNITS")

213

entryN = CDFgetVarNum (id, "PRES LVL") * The zEntry number is the zVariable number.
status = CDFinquireAttrzEntry (id, attrN, entryN, dataType, numElems)
if dataType = CDF_CHAR then
dim buffer as string
status = CDFgetAttrzEntry (id, attrN, entryN, buffer)
end if

catch ex as Exception

end try

4.4.30 CDFgetAttrzEntryDataType

integer CDFgetAttrzEntryDataType (¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.

entryNum as integer,
dataType as integer)

in -- zEntry number.
out -- zEntry data type.

CDFgetAttrzEntryDataType returns the data type of the zEntry for the specified variable attribute in a CDF. The data
types are described in Section 2.6.
The arguments to CDFgetAttrzEntryDataType are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.
entryNum The zEntry number that is the zVariable number.

dataType The data type of the zEntry.

4.4.30.1. Example(s)

The following example gets the data type of the attribute named MY ATTR for the zVariable MY VARI in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
dim attrNum as integer Attribute number.
dim entryNum as integer zEntry number.

dim dataType as integer zEntry data type.

3
3

try

214

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VAR1”)
status = CDFgetAttrzEntryDataType (id, attrNum, entryNum, dataType)

catch ex as Exception

end try

4.4.31 CDFgetAttrzEntryNumElements

integer CDFgetAttrzEntryNumElements (‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.

entryNum as integer ,
numElems as integer)

in -- zEntry number.
out -- zEntry’s number of elements.

CDFgetAttrzEntryNumElements returns the number of elements of the zEntry for the specified variable attribute in a
CDF.

The arguments to CDFgetAttrzEntryNumElements are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.
entryNum The zEntry number that is the zVariable number.

numElems The number of elements of the zEntry.

4.4.31.1. Example(s)

The following example returns the number of elements for attribute named MY ATTR for the zVariable MY VARI in
a CDF

dim id as long ¢ CDF identifier.

Dim status as integer ‘ Returned status code.

dim attrNum as integer Attribute number.

dim entryNum as integer zEntry number.

dim numFElements as integer ¢ zEntry’s number of elements.

3

3

215

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)

entryNum = CDFgetVarNum (id, “MY_VARI1”)
status = CDFgetAttrzEntryNumElements (id, attrNum, entryNum, out numElements)

catch ex as Exception

end try

4.4.32 CDFgetNumAttrgEntries

integer CDFgetNumAttrgEntries (¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, in -- Attribute number.

entries as integer) out -- Total gEntries.

CDFgetNumAttrgEntries returns the total number of entries (gEntries) written for the specified global attribute in a
CDF.
The arguments to CDFgetNumAttrgEntries are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number.

entries Number of gEntries for attrNum.

4.4.32.1. Example(s)

The following example retrieves the total number of gEntries for the global attribute MY ATTR in a CDF.

3

dim status as integer Returned status code.
dim id as long CDF identifier.

Dim attrNum as integer ¢ Attribute number.
Dim numEntries as integer Number of entries.
Dim i as integer

3

try

attrNum = CDFgetAttrNum (id, “MUY_ATTR”)

216

status = CDFgetNumAttrgEntries (id, attrNum, numEntries)
for i=0 to (numEntries-1)

‘ process an entry
next i
catch ex as Exception

end try

4.4.33 CDFgetNumAttributes

integer CDFgetNumA_ttributes (¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

numAttrs as integer) ¢ out -- Total number of attributes.
CDFgetNumAttributes returns the total number of global and variable attributes in a CDF.

The arguments to CDFgetNumAttributes are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numaA_ttrs The total number of global and variable attributes.

4.4.33.1. Example(s)

The following example returns the total number of global and variable attributes in a CDF.

dim status as integer ‘ Returned status code.
dim id as long CDF identifier.

dim numAttrs as integer ¢ Number of attributes.
try

status = CDFgetNumAttributes (id, out numA(ttrs)

catch ex as Exception

end try

217

4.4.34 CDFgetNumAttrrEntries

integer CDFgetNumAttrrEntries (¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer , in -- Attribute number.

entries as integer) out -- Total rEntries.

CDFgetNumAttrrEntries returns the total number of entries (rEntries) written for the rVariables in the specified
(variable) attribute of a CDF.
The arguments to CDFgetNumAttrrEntries are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number.

entries Total rEntries.

4.4.34.1. Example(s)

The following example returns the total number of rEntries from the variable attribute “MY_ATTR” in a CDF.

dim status as integer ‘ Returned status code.

dim id as long

dim attrNum as integer ‘ Attribute number.
dim entries as integer ¢ Number of entries.

try

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFgetNumAttrrEntries (id, attrNum, entries)

catch ex as Exception

end try

218

4.4.35 CDFgetNumAttrzEntries

integer CDFgetNumAttrzEntries (¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, in -- Attribute number.

entries as integer) out -- Total zEntries.

CDFgetNumAttrzEntries returns the total number of entries (zEntries) written for the zVariables in the specified
variable attribute in a CDF.
The arguments to CDFgetNumAttrzEntries are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number.

entries Total zEntries.

4.4.35.1. Example(s)

The following example returns the total number of zEntries for the variable attribute MY ATTR in a CDF.

dim status as integer ‘ Returned status code.
dim id as long CDF identifier.

dim attrNum as integer ‘ Attribute number.
dim entries as integer ¢ Number of entries.
try

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFgetNumAttrzEntries (id, attrNum, entries)

catch ex as Exception

end try

4.4.36 CDFgetNumgAttributes

integer CDFgetNumgA ttributes (¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

219

3

numAttrs as integer out -- Total number of global attributes.
g g

CDFgetNumgAttributes returns the total number of global attributes in a CDF.
The arguments to CDFgetNumgAttributes are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numAttrs The number of global attributes.

4.4.36.1. Example(s)

The following example returns the total number of global attributes in a CDF.

dim status as integer ‘ Returned status code.

dim id as long CDF identifier.

dim numAttrs as integer * Number of global attributes.
try

status = CDFgetNumgAttributes (id, numAttrs)

catch ex as Exception

end try

4.4.37 CDFgetNumvAttributes

integer CDFgetNumvAttributes (‘ out -- Completion status code.

id as long, ‘ in-- CDF identifier.

numAttrs as integer) ¢ out -- Total number of variable attributes.
CDFgetNumvAttributes returns the total number of variable attributes in a CDF.

The arguments to CDFgetNumvAttributes are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

220

numAttrs The number of variable attributes.

4.4.37.1. Example(s)

The following example returns the total number of variable attributes of a CDF.

dim status as integer ‘ Returned status code.

dim id as long CDF identifier.

dim numAttrs as integer ¢ Number of variable attributes.
try

status = CDFgetNumvAttributes (id, numAttrs)

catch ex as Exception

end try

4.4.38 CDFinquireAttr

integer CDFinquireAttr(out -- Completion status code.

id as long, ‘ in-- CDF identifier.

attrNum as integer, in -- Attribute number.

attrName as string, out -- Attribute name.

attrScope as integer, out -- Attribute scope.

maxgEntry as integer, out -- Maximum gEntry number.
maxrEntry as integer, out -- Maximum rEntry number.
maxzEntry as integer) out -- Maximum zEntry number.

CDFinquireAttr is used to inquire information about the specified attribute. This method expands the method
CDFattrInquire to provide an extra information about zEntry if the attribute has a variable scope.
The arguments to CDFinquireAttr are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number to inquire. This number may be determined with a call to
CDFgetAttrNum.

221

attrName

attrScope

maxgEntry

maxrEntry

maxzEntry

4.4.38.1. Example(s)

The attribute's name that corresponds to attrNum. This string length is limited to
CDF_ATTR NAME LEN256.

The scope of the attribute (GLOBAL _SCOPE or VARIABLE _SCOPE). Attribute scopes
are defined in Section 2.13.

For vAttributes, this value of this field is -1 as it doesn’t apply to global attribute entry
(gEntry). For gAttributes, this is the maximum entry (gentry) number used. This number
may not correspond with the number of entries (if some entry numbers were not used). If
no entries exist for the attribute, then the value of -1 is returned.

For gAttributes, this value of this field is -1 as it doesn’t apply to rVariable attribute entry
(tEntry). For vAttributes, this is the maximum rVariable attribute entry (rEntry) number
used. This number may not correspond with the number of entries (if some entry numbers
were not used). If no entries exist for the attribute, then the value of -1 is returned.

For gAttributes, this value of this field is -1 as it doesn’t apply to zVariable attribute entry
(zEntry). For vAttributes, this is the maximum zVariable attribute entry (zEntry) number
used. This may not correspond with the number of entries (if some entry numbers were not
used). If no entries exist for the attribute, then the value of -1 is returned.

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first

determined by calling the m:

dim id as long
Dim status as integer

Dim numDims as integer
Dim dimSizes() as integer

Dim encoding as integer
Dim majority as integer
Dim maxRec as integer
Dim numVars as integer

Dim numAttrs as integer

Dim attrN as integer
Dim attrName as string

ethod CDFinquireCDF. Note that attribute numbers start at zero (0) and are consecutive.

CDF identifier.

Returned status code.

Number of dimensions.
Dimension sizes (allocate to allow the
maximum number of dimensions).
Data encoding.

Variable majority.

Maximum record number in CDF.
Number of variables in CDF.
Number of attributes in CDF.
attribute number.

¢ attribute name.

3

Dim attrScope as integer ¢ attribute scope.

Dim maxgEntry as integer

Dim maxrEntry as integer

Dim maxzEntry as integer ¢ Maximum entry numbers.

try

status = CDFinquireCDF (id, numDims, dimSizes, encoding, majority, maxRec, numVars, numAttrs)
for attrN = 0 to (numAttrs-1)

status = CDFinquire

Attr (id, attrN, attrName, attrScope, maxgEntry, maxrEntry, maxzEntry)

222

next attrN
catch ex as Exception

end try

4.4.39 CDFinquireAttrgEntry

integer CDFinquireAttrgEntry (out -- Completion status code.

id as long, ‘ in-- CDF identifier.

attrNum as integer, in -- attribute number.

entryNum as integer, in -- Entry number.

dataType as integer, out -- Data type.

numElements as integer) out -- Number of elements (of the data type).

This method is identical to CDFattrEntrylnquire. CDFinquireAttrgEntry is used to inquire information about a global
attribute entry.
The arguments to CDFinquireAttrgEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number to inquire. This number may be determined with a call to
CDFgetAttrNum.

entryNum The entry number to inquire.

dataType The data type of the specified entry. The data types are defined in Section 2.6.

numElements The number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string. For all other data types
this is the number of elements in an array of that data type.

4.4.39.1. Example(s)

The following example returns each entry for a global attribute named TITLE. Note that entry numbers need not be
consecutive - not every entry number between zero (0) and the maximum entry number must exist. For this reason
NO SUCH_ENTRY is an expected error code.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim attrN as integer ¢ attribute number.
Dim entryN as integer * Entry number.

Dim attrName as string ¢ attribute name.

223

3

attribute scope.

Maximum entry number used.
Data type.

Number of elements

Dim attrScope as integer
Dim maxEntry as integer
Dim dataType as integer
Dim numElems as integer

try
attrN = CDFgetAttrNum (id, "TITLE")
status = CDFattrInquire (id, attrN, attrName, attrScope, maxEntry)

for entryN = 0 to maxEntry
status = CDFinquireAttrgEntry (id, attrN, entryN, dataType, numElems)

¢ process entries
next entryN
catch ex as Exception

end try

4.4.40 CDFinquireAttrrEntry

integer CDFinquireAttrrEntry (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, in -- Attribute number.
entryNum as integer, in -- Entry number.

dataType as integer, out -- Data type.
numElements as integer) out -- Number of elements

This method is identical to the method CDFattrEntrylnquire. CDFinquireAttrrEntry is used to inquire about an
rVariable’s attribute entry.
The arguments to CDFinquireAttrrEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number to inquire. This number may be determined with a call to
CDFgetAttrNum.
entryNum The entry number to inquire. This is the rVariable number (the rVariable being

described in some way by the rEntry).
dataType The data type of the specified entry. The data types are defined in Section 2.6.
numElements The number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string. For all other data types
this is the number of elements in an array of that data type.

224

4.4.40.1. Example(s)

The following example determines the data type of the “UNITS” attribute for the rVariable “Temperature”, then
retrieves and displays the value of the UNITS attribute.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim attrN as integer ‘ Attribute number.
Dim entryN as integer * Entry number.

Dim dataType as integer ¢ Data type.

Dim numElems as integer * Number of elements.
try

atttN = CDFgetAttrNum (id, "UNITS")
entryN = CDFgetVarNum (id, "Temperature")
status = CDFinquireAttrrEntry (id, attrN, entryN, dataType, numElems)
if dataType = CDF_CHAR then
dim buffer as string
status = CDFgetAttrrEntry (id, attrN, entryN, buffer)

end if
catch ex as Exception

end try

4.4.41 CDFinquireAttrzEntry

integer CDFinquireAttrzEntry (out -- Completion status code.

id as long, ‘ in-- CDF identifier.

attrNum as integer, ‘¢ in -- (Variable) Attribute number.

entryNum as integer, in -- zEntry number.

dataType as integer, out -- Data type.

numElements as integer) out -- Number of elements (of the data type).

CDFinquireAttrzEntry is used to inquire about a zVariable’s attribute entry.
The arguments to CDFinquireAttrzEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

225

attrNum The (variable) attribute number for which to inquire an entry. This number may be
determined with a call to CDFgetAttrNum (see Section 4.4.24).

entryNum The entry number to inquire. This is the zVariable number (the zVariable being
described in some way by the zEntry).

dataType The data type of the specified entry. The data types are defined in Section 2.6.

numElements The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string. For all other data types
this is the number of elements in an array of that data type.

4.4.41.1. Example(s)

The following example determines the data type of the UNITS attribute for the zVariable Temperature, then retrieves
and displays the value of the UNITS attribute.

dim id as long ¢ CDF identifier.

Dim status as integer ‘ Returned status code.
Dim attrN as integer attribute number.
Dim entryN as integer Entry number.

Dim dataType as integer Data type.

Dim numElems as integer Number of elements .

3
3
3

3

try
atttN = CDFgetAttrNum (id, "UNITS")
entryN = CDFgetVarNum (id, "Temperature")

status = CDFinquireAttrzEntry (id, attrN, entryN, dataType, numElems)
if dataType = CDF_CHAR then
dim buffer as string
status = CDFgetAttrzEntry (id, attrN, entryN, buffer)
end if
catch ex as Exception

end try

4.4.42 CDFputAttrgEntry

integer CDFputAttrgEntry(‘ out -- Completion status code.
id as long, in -- CDF identifier.

attrNum as integer, in -- Attribute number.
entryNum as integer, in -- Attribute entry number.
dataType as integer, in -- Data type of this entry.

226

3

numElements as integer, in -- Number of elements in the entry (of the data type).
value as TYPE) ‘ in -- Attribute entry value.
* TYPE -- VB value/string type.

CDFputAttrgEntry is used to write a global attribute entry. The entry may or may not already exist. If it does exist, it
is overwritten. The data type and number of elements (of that data type) may be changed when overwriting an existing
entry. A global attribute can have one or more attribute entries.

The arguments to CDFputAttrgEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum The attribute entry number.

dataType The data type of the specified entry. Specify one of the data types defined in Section
2.6.

numElements The number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

value The value(s) to write. The entry value is written to the CDF from memory address
value.

4.4.42.1. Example(s)

The following example writes a global attribute entry to the global attribute called TITLE.

dim id as long ¢ CDF identifier.

Dim status as integer ‘ Returned status code.
Dim entryNum as integer Attribute entry number.
Dim title as string = "CDF title." * Value of TITLE attribute.

3

entryNum = 0
try

status = CDFputAttrgEntry (id, CDFgetAttrNum (id,"TITLE"), entryNum, CDF CHAR, title.Length, title)
catch ex as Exception

end try

227

4.4.43 CDFputAttrrEntry

integer CDFputAttrrEntry(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, in -- Attribute number.
entryNum as integer, in — Attribute entry number.
dataType as integer, in -- Data type.
numElems as integer, in -- Number of elements.
value as TYPE) ‘ in -- tribute entry value.

* TYPE -- VB value/string type.

This method is identical to the method CDFattrPut. CDFputAttrrEntry is used to write rVariable’s attribute entry. The
entry may or may not already exist. If it does exist, it is overwritten. The data type and number of elements (of that
data type) may be changed when overwriting an existing entry.

The arguments to CDFputAttrrEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum The attribute entry number that is the rVariable number to which this attribute entry
belongs.

dataType The data type of the specified entry. Specify one of the data types defined in Section
2.6.

numElements The number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

value The value(s) to write. The entry value is written to the CDF from memory address
value.

4.4.43.1. Example(s)

The following example writes to the variable scope attribute VALIDs for the entry, of two elements, that corresponds
to the rVariable TMP.

dim id as long ¢ CDF identifier.

Dim status as integer ‘ Returned status code.

Dim entryNum as integer Entry number.

Dim numElements as integer Number of elements (of data type).

Dim TMPvalids() as short = {15,30} ¢ Value(s) of VALIDs attribute,
 rEntry for rVariable TMP.

3

3

numElements = 2
try

228

status = CDFputAttrrEntry (id, CDFgetAttrNum (id,"VALIDs"), CDFgetVarNum (id,"TMP"),

catch ex as Exception

end try

CDF_INT2, numElements, TMPvalids)

4.4.44 CDFputAttrzEntry

integer CDFputAttrzEntry(

id as long,

attrNum as integer,
entryNum as integer,
dataType as integer,
numElements as integer,
value as TYPE)

out -- Completion status code.
‘ in -- CDF identifier.

in -- Attribute number.

in -- Attribute entry number.

‘ in -- Data type of this entry.

in -- Number of elements in the entry (of the data type)
in -- Attribute entry value.

* TYPE -- VB value/string type.

CDFputAttrzEntry is used to write zVariable’s attribute entry. The entry may or may not already exist. If it does exist,
it is overwritten. The data type and number of elements (of that data type) may be changed when overwriting an

existing entry.

The arguments to CDFputAttrzEntry are defined as follows:

id

attrNum

entryNum

dataType

numElements

value

4.4.44.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The (variable) attribute number. This number may be determined with a call to
CDFgetAttrNum (see Section 4.4.24).

The entry number that is the zVariable number to which this attribute entry belongs.

The data type of the specified entry. Specify one of the data types defined in Section
2.6.

The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (An array of characters).

For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address
value.

229

The following example writes a zVariable’s attribute entry. The entry has two elements (that is two values for non-
CDF_CHAR type). The zEntry in the variable scope attribute VALIDs corresponds to the zVariable TMP.

dim id as long ¢ CDF identifier.

Dim status as integer ‘ Returned status code.

Dim numElements as integer ¢ Number of elements (of data type).
Dim TMPvalids() as short = {15,30} ¢ Value(s) of VALIDs attribute,

zEntry for zVariable TMP.
numElements = 2
try

status = CDFputAttrzEntry (id, CDFgetAttrNum (id,"VALIDs"), CDFgetVarNum (id,"TMP"),
CDF_INT2, numElements, TMPvalids)

catch ex as Exception

end try

4.4.45 CDFrenameAttr

integer CDFrenameAttr(out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, in -- Attribute number.
attrName as string) in -- New attribute name.

This method is identical to method CDFattrRename. CDFrenameAttr renames an existing attribute.

4.4.45.1. Example(s)

In the following example the attribute named LAT is renamed to LATITUDE.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
try

status = CDFrenameAttr (id, CDFgetAttrNum (id,"LAT"), "LATITUDE")

catch ex as Exception

230

end try

4.4.46 CDFsetAttrgEntryDataSpec

integer CDFsetAttrgEntryDataSpec (‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, in -- Attribute number.
entryNum as integer, in -- gEntry number.
dataType as integer) in -- Data type.

CDFsetAttrgEntryDataSpec respecifies the data type of a gEntry of a global attribute in a CDF. The new and old data
type must be equivalent. Refer to the CDF User’s Guide for descriptions of equivalent data types.
The arguments to CDFsetAttrgEntryDataSpec are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The global attribute number.
entryNum The gEntry number.
dataType The new data type.

4.4.46.1. Example(s)

The following example modifies the third entry’s (entry number 2) data type of the global attribute MY ATTR in a
CDF. It will change its original data type from CDF INT2 to CDF_UINT2.

dim id as long CDF identifier.

Dim status as integer ‘ Returned status code.
Dim entryNum as integer gEntry number.

Dim dataType as integer The new data type

3

3

entryNum = 2
dataType = CDF_UINT2
numElems = 1

try
status = CDFsetAttrgEntryDataSpec (id, CDFgetAttrNum (id, “MY_ATTR”), entryNum, dataType)

catch ex as Exception

231

end try

4.4.47 CDFsetAttrrEntryDataSpec

integer CDFsetAttrrEntryDataSpec (‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, in -- Attribute number.
entryNum as integer, in -- rEntry number.
dataType as integer, in -- Data type.

¢

numElements as integer) in -- Number of elements.

CDFsetAttrrEntryDataSpec respecifies the data specification (data type and number of elements) of an rEntry of a
variable attribute in a CDF. The new and old data type must be equivalent, and the number of elements must not be
changed. Refer to the CDF User’s Guide for descriptions of equivalent data types.

The arguments to CDFsetAttrrEntryDataSpec are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The variable attribute number.
entryNum The rEntry number.
dataType The new data type.
numElements The new number of elements.

4.4.47.1. Example(s)

The following example modifies the data specification for an rEntry, corresponding to rVariable “MY_VAR?”, in the
variable attribute “MY_ATTR” in a CDF. It will change its original data type from CDF INT2 to CDF _UINT?2.

dim id as long CDF identifier.

Dim status as integer ‘ Returned status code.

Dim dataType as integer

Dim numElements as integer ¢ Data type and number of elements.

dataType = CDF_UINT2
numElems = 1

try

status = CDFsetAttrrEntryDataSpec (id, CDFgetAttrNum (id, “MY_ATTR”), _
CDFgetVarNum (id, “MY_VAR?”), dataType, numElems)

232

catch ex as Exception

end try

4.4.48 CDFsetAttrScope

integer CDFsetAttrScope (¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, in -- Attribute number.

scope as integer) in -- Attribute scope.

CDFsetAttrScope respecifies the scope of an attribute in a CDF. Specify one of the scopes described in Section 2.13.
Global-scoped attributes will contain only gEntries, while variable-scoped attributes can hold rEntries and zEntries.
The arguments to CDFsetAttrScope are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number.

scope The new attribute scope. The value should be either VARIABLE SCOPE or
GLOBAL SCOPE.

4.4.48.1. Example(s)

The following example changes the scope of the global attribute named MY ATTR to a variable attribute
(VARIABLE SCOPE).

dim id as long CDF identifier.
Dim status as integer ‘ Returned status code.
Dim scope as integer ¢ New attribute scope.

scope = VARIABLE SCOPE
try

status = CDFsetAttrScope (id, CDFgetAttrNum (id, “MY_ATTR”), scope)
catch ex as Exception

end try

233

4.4.49 CDFsetAttrzEntryDataSpec

integer CDFsetAttrzEntryDataSpec (‘ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, ‘ in -- Attribute number.
entryNum as integer, ‘ in -- zEntry number.

dataType as integer) in -- Data type.

CDFsetAttrzEntryDataSpec modifies the data type of a zEntry of a variable attribute in a CDF. The new and old data
type must be equivalent. Refer to the CDF User’s Guide for the description of equivalent data types.
The arguments to CDFsetAttrzEntryDataSpec are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The variable attribute number.
entryNum The zEntry number that is the zVariable number.
dataType The new data type.

4.4.49.1. Example(s)

The following example respecifies the data type of the attribute entry of the attribute named MY ATTR that is
associated with the zVariable MY VAR. It will change its original data type from CDF INT2 to CDF UINT2.

dim id as long CDF identifier.

Dim status as integer ‘ Returned status code.
dim dataType as integer ¢ Data type

try

dataType = CDF_UINT2
numElems = 1
status = CDFsetAttrzEntryDataSpec (id, CDFgetAttrNum (id, “MY_ATTR”),
CDFgetVarNum (id, “MY_VAR?), dataType)
. catch ex as Exception

end try

234

Chapter §

S Interpreting CDF Status Codes

Most CDF APIs return a status code of type int. The symbolic names for these codes are defined in CDFException.cs
and should be used in your applications rather than using the true numeric values. Appendix A explains each status
code. When the status code returned from a CDF API is tested, the following rules apply.

status > CDF_OK Indicates successful completion but some additional information is
provided. These are informational codes.

status = CDF_OK Indicates successful completion.

CDF_WARN < status < CDF_OK Indicates that the function completed but probably not as expected.
These are warning codes.

status < CDF_WARN Indicates that the function did not complete. These for most cases
are error codes, thus an exception might be thrown.

The following example shows how you could check the status code returned from CDF functions.

dim status as integer

try

i status = CDFfunction (...) ¢ any CDF function returning integer

;:atch ex as Exception

end try
In your own status handler you can take whatever action is appropriate to the application. An example status handler
follows. Note that no action is taken in the status handler if the status is CDF_OK.

dim status as integer = ex.GetCurrentStatus()

dim errorMsg as string = ex.GetStatusMsg(status)

Explanations for all CDF status codes are available to your applications through the method CDFerror. CDFerror
encodes in a text string an explanation of a given status code.

235

Chapter 6

6 EPOCH Utility Routines

Several functions exist that compute, decompose, parse, and encode CDF_EPOCH and CDF_EPOCH]16 values. These
functions may be called by applications using the CDF _EPOCH and CDF_EPOCH16 data types and are included in
the CDF library. The Concepts chapter in the CDF User's Guide describes EPOCH values. All these APIs are defined
as static methods in CDFAPIs class. The date/time components for CDF_EPOCH and CDF_EPOCH16 are UTC-
based, without leap seconds.

The CDF_EPOCH and CDF_EPOCH16 data types are used to store time values referenced from a particular epoch.

For CDF that epoch values for CDF_EPOCH and CDF_EPOCH16 are 01-Jan-0000 00:00:00.000 and 01-Jan-0000
00:00:00.000.000.000.000, respectively.

6.1 computeEPOCH

double computeEPOCH(¢ out -- CDF_EPOCH value returned.
year as integer, ‘in -- Year (AD, e.g., 1994).
month as integer, ‘in -- Month (1-12).

day as integer, ‘in -- Day (1-31).

hour as integer, ‘in -- Hour (0-23).

minute as integer, ‘in -- Minute (0-59).

second as integer, ‘in -- Second (0-59).

msec as integer) ‘ in -- Millisecond (0-999).

computeEPOCH calculates a CDF _EPOCH value given the individual components. If an illegal component is
detected, the value returned will be ILLEGAL EPOCH_VALUE.

NOTE: There are two variations on how computeEPOCH may be used. If the month argument is 0 (zero), then the
day argument is assumed to be the day of the year (DOY) having a range of 1 through 366. Also, if the hour, minute,
and second arguments are all 0 (zero), then the msec argument is assumed to be the millisecond of the day having a
range of 0 through 86400000.

236

6.2 EPOCHbreakdown

void EPOCHbreakdown(

epoch as double, ‘in -- The CDF_EPOCH value.
year as integer, ¢ out -- Year (AD, e.g., 1994).
month as integer, ¢ out -- Month (1-12).

day as integer, ¢ out -- Day (1-31).

hour as integer, ¢ out -- Hour (0-23).

minute as integer, ¢ out -- Minute (0-59).

second as integer, ¢ out -- Second (0-59).

msec as integer) ¢ out -- Millisecond (0-999).

EPOCHbreakdown decomposes a CDF_EPOCH value into the individual components.

6.3 encodeEPOCH

void encodeEPOCH(
epoch as double ‘in -- The CDF_EPOCH value.
epString as string) ¢ out -- The standard date/time string.

encodeEPOCH encodes a CDF_EPOCH value into the standard date/time character string. The format of the string is
dd-mmm-yyyy hh:mm:ss.ccc where dd is the day of the month (1-31), mmm is the month (Jan, Feb, Mar, Apr,
May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the minute (0-59), ss is the
second (0-59), and ccc is the millisecond (0-999).

6.4 encodeEPOCHI1

void encodeEPOCH1(
epoch as double ‘in -- The CDF_EPOCH value.
epString as string) ‘ out -- The alternate date/time string.

encodeEPOCHI1 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is

yyyymmdad.ttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and ttttttt is the
fraction of the day (e.g., 5000000 is 12 o'clock noon).

6.5 encodeEPOCH2

void encodeEPOCH2(
epoch as double ‘in -- The CDF_EPOCH value.
epString as string) ‘ out -- The alternate date/time string.

237

encodeEPOCH2 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the hour (0-
23), mm is the minute (0-59), and ss is the second (0-59).

6.6 encodeEPOCH3

void encodeEPOCH3(
epoch as double ‘in -- The CDF_EPOCH value.
epString as string) ‘ out -- The alternate date/time string.

encodeEPOCH3 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyy-mo-ddThh:mm:ss.cccZ where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is
the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

6.7 encodeEPOCH4

void encodeEPOCH4(
epoch as double ‘in -- The CDF_EPOCH value.
epString as string) “ out -- The ISO 8601 date/time string.

encodeEPOCH3 encodes a CDF_EPOCH value into an alternate, ISO 8601 date/time character string. The format of
the string is yyyy-mo-ddThh:mm:ss.ccc where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-
31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

6.8 encodeEPOCHXx

void encodeEPOCHX(

epoch as double ‘in -- The CDF_EPOCH value.
format as string ¢ in -- The format string.

encoded as string) ¢ out -- The custom date/time string.
encodeEPOCHx encodes a CDF_EPOCH value into a custom date/time character string. The format of the encoded
string is specified by a format string.

The format string consists of EPOCH components, which are encoded, and text that is simply copied to the encoded
custom string. Components are enclosed in angle brackets and consist of a component token and an optional width.
The syntax of a component is: <token[.width]>. If the optional width contains a leading zero, then the component will
be encoded with leading zeroes (rather than leading blanks).

The supported component tokens and their default widths are as follows. . .

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>

238

month Month (‘Jan',"Feb',...,"Dec") <month>

mm Month (1,2,...,12) <mm.0>
year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
fos Fraction of second. <fos.3>
fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format
string (character stuffing).

For example, the format string used to encode the standard EPOCH date/time character string (see Section 6.3) would
be. ..

<dom.02>-<month>-<year> <hour>:<min>:<sec>.<fos>

6.9 parseEPOCH

double parseEPOCH(‘ out -- CDF_EPOCH value.
epString as string) “ in -- The standard date/time string.

parseEPOCH parses a standard date/time character string and returns a CDF_EPOCH value. The format of the string is

that produced by the encodeEPOCH method described in Section 6.3. If an illegal field is detected in the string the
value returned will be ILLEGAL EPOCH_VALUE.

6.10 parseEPOCHI1

double parseEPOCH1(‘ out -- CDF_EPOCH value.
epString as string) ‘in -- The alternate date/time string.

parseEPOCHI1 parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encodeEPOCH1 method described in Section 6.4. If an illegal field is detected in the
string the value returned will be ILLEGAL EPOCH_VALUE.

6.11 parseEPOCH2

double parseEPOCH2(‘ out -- CDF_EPOCH value.
epString as string) ‘ in -- The alternate date/time string.

239

parseEPOCH?2 parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encodeEPOCH?2 method described in Section 6.5. If an illegal field is detected in the
string the value returned will be ILLEGAL EPOCH_VALUE.

6.12 parseEPOCH3

double parseEPOCH3(‘ out -- CDF_EPOCH value.
epString as string) ‘ in -- The alternate date/time string.

parseEPOCH3 parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the

string is that produced by the encodeEPOCH3 method described in Section 6.6. If an illegal field is detected in the
string the value returned will be ILLEGAL _EPOCH_VALUE.

6.13 parseEPOCH4

double parseEPOCH4(‘ out -- CDF_EPOCH value.
epString as string) ‘in -- The alternate date/time string.

parseEPOCH3 parses an alternate, ISO 8601 date/time character string and returns a CDF_EPOCH value. The

format of the string is that produced by the encodeEPOCH3 method described in Section 6.7. If an illegal field is
detected in the string the value returned will be ILLEGAL EPOCH_ VALUE.

6.14 computeEPOCH16

double computeEPOCH16(¢ out -- status code returned.
year as integer, ‘in -- Year (AD, e.g., 1994).
month as integer, “in -- Month (1-12).

day as integer, ‘in -- Day (1-31).

hour as integer, ‘in -- Hour (0-23).

minute as integer, ‘in -- Minute (0-59).

second as integer, “in -- Second (0-59).

msec as integer, ‘in -- Millisecond (0-999).
microsec as integer, ¢ in -- Microsecond (0-999).
nanosec as integer, ‘ in -- Nanosecond (0-999).
picosec as integer, ‘in -- Picosecond (0-999).
epoch as double()) * out-- CDF_EPOCH16 value

computeEPOCH16 calculates a CDF_EPOCH16 value given the individual components. If an illegal component is
detected, the value returned will be ILLEGAL EPOCH_VALUE.

240

6.15 EPOCHI16breakdown

void EPOCH16breakdown(

epoch as double(), ‘in -- The CDF_EPOCH16 value.
year as integer, ¢ out -- Year (AD, e.g., 1994).
month as integer, ‘ out -- Month (1-12).

day as integer, ¢ out -- Day (1-31).

hour as integer, ¢ out -- Hour (0-23).

minute as integer, ¢ out -- Minute (0-59).

second as integer, ¢ out -- Second (0-59).

msec as integer, ¢ out -- Millisecond (0-999).
microsec as integer, ¢ out -- Microsecond (0-999).
nanosec as integer, ¢ out -- Nanosecond (0-999).
picosec as integer) ¢ out -- Picosecond (0-999).

EPOCHI16breakdown decomposes a CDF_EPOCH16 value into the individual components.

6.16 encodeEPOCHI16

void encodeEPOCH16(
epoch as double(), ‘in -- The CDF_EPOCHI16 value.
epString as string) ‘ out -- The date/time string.

encodeEPOCH16 encodes a CDF_EPOCH16 value into the standard date/time character string. The format of the
string is dd-mmm-yyyy hh:mm:ss.mmm:uuu:nnn:ppp where dd is the day of the month (1-31), mmm is the
month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is
the minute (0-59), ss is the second (0-59), mmm is the millisecond (0-999), uuu is the microsecond (0-999), nnn is the
nanosecond (0-999), and ppp is the picosecond (0-999).

6.17 encodeEPOCHI16 1

void encodeEPOCHI16 1(

epoch as double(), “in -- The CDF_EPOCHI16 value.
epString as string) ¢ out -- The date/time string.
encodeEPOCH16_1 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the

string is yyyymmdd.ttttttttttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and
ttttttttttttttt is the fraction of the day (e.g., 500000000000000 is 12 o'clock noon).

6.18 encodeEPOCHI16 2

void encodeEPOCHI16 2(

241

epoch as double(), ‘in -- The CDF_EPOCHI16 value.
epString as string) ¢ out -- The date/time string.

encodeEPOCH16_2 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the
hour (0-23), mm is the minute (0-59), and ss is the second (0-59).

6.19 encodeEPOCH16 3

void encodeEPOCH16_3(
epoch as double(), “in -- The CDF_EPOCHI16 value.
epString as string) ‘ out -- The alternate date/time string.

encodeEPOCH16_3 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyy-mo-ddThh:mm:ss.mmm:uuu:nnn:pppZ where yyyy is the year, mo is the month (1-12), dd is the day of
the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), mmm is the millisecond (0-
999), uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).

6.20 encodeEPOCHI16 4

void encodeEPOCHI16_4(
epoch as double(), ‘in -- The CDF_EPOCHI16 value.
epString as string) ‘ out -- The alternate date/time string.

encodeEPOCH16_3 encodes a CDF_EPOCH16 value into an alternate, ISO 8601 date/time character string. The
format of the string is yyyy-mo-ddThh:mm:ss.mmmuuunnnppp where yyyy is the year, mo is the month (1-12), dd is
the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), mmm is the
millisecond (0-999), uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).

6.21 encodeEPOCHI16 x

void encodeEPOCHI16 x(

epoch as double(), ‘in -- The CDF_EPOCHI16 value.
format as string ¢ in -- The format string.

encoded as string) ¢ out -- The date/time string.
encodeEPOCH16_x encodes a CDF_EPOCH16 value into a custom date/time character string. The format of the
encoded string is specified by a format string.

The format string consists of EPOCH components, which are encoded, and text that is simply copied to the encoded
custom string. Components are enclosed in angle brackets and consist of a component token and an optional width.
The syntax of a component is: <token[.width]>. If the optional width contains a leading zero, then the component will
be encoded with leading zeroes (rather than leading blanks).

242

The supported component tokens and their default widths are as follows. . .

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>
month Month (‘Jan',"Feb',...,"Dec") <month>
mm Month (1,2,...,12) <mm.0>
year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
msc Millisecond (000-999) <msc.3>
usc Microsecond (000-999) <usc.3>
nsc Nanosecond (000-999) <nsc.3>
psc Picosecond (000-999) <psc.3>
fos Fraction of second. <fos.12>
fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format
string (character stuffing).

For example, the format string used to encode the standard EPOCH date/time character string would be. . .

<dom.02>-<month>-<year> <hour>:<min>:<sec>.<msc>.<usc>.<nsc>.<psc>.<fos>

6.22 parseEPOCHI16

double parseEPOCH16(¢ out -- The status code returned.
epString as string, ‘in -- The date/time string.
epoch as double()) ¢ out -- The CDF_EPOCH]16 value returned

parseEPOCH16 parses a standard date/time character string and returns a CDF_EPOCH16 value. The format of the
string is that produced by the encodeEPOCH16 function. If an illegal field is detected in the string the value returned
will be ILLEGAL EPOCH VALUE.

6.23 parseEPOCHI16 1

double parseEPOCH16_1(¢ out -- The status code returned.
epString as string, ‘in -- The date/time string.
epoch as double()) ¢ out -- The CDF_EPOCH]16 value returned

243

parseEPOCH16 1 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16 1 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

6.24 parseEPOCH16 2

double parseEPOCH16 2(¢ out -- The status code returned.
epString as string, ‘ in -- The date/time string.
epoch as double()) ‘ out -- The CDF_EPOCH]16 value returned

parseEPOCH16_2 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16 2 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

6.25 parseEPOCHI16 3

double parseEPOCH16 3(¢ out -- The status code returned.
epString as string, ‘in -- The date/time string.
epoch as double()) ‘ out -- The CDF_EPOCH]16 value returned

parseEPOCH16_3 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16 3 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

6.26 parseEPOCH16 4

double parseEPOCH16 4(¢ out -- The status code returned.
epString as string, “in -- The ISO 8601 date/time string.
epoch as double()) ‘ out -- The CDF_EPOCH]16 value returned

parseEPOCH16_4 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16 3 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

244

7 TT2000 Utility Routines

Several functions exist that compute, decompose, parse, and encode CDF_TIME TT2000 values. These functions may
be called by applications using the CDF_TIME TT2000 data type and is included in the CDF library. The Concepts
chapter in the CDF User's Guide describes TT2000 values. All these APIs are defined as static methods in CDFAPIs
class. The date/time components for CDF_TIME TT2000 are UT C-based, with leap seconds.

The CDF_TIME_TT2000 data type is used to store time values referenced from J2000 (2000-01-
01T12:00:00.000000000). For CDF, values in CDF_TIME_TT2000 are nanoseconds from J2000 with leap seconds
included. TT2000 data can cover years between 1707 and 2292.

7.1 ComputeTT2000

compueTT2000 is a overloaded function.

long computeTT2000(¢ out -- CDF_TIME_TT2000 value.
year as double, ‘in -- Year (AD, e.g., 1994).
month as double, ‘in -- Month (1-12).

day as double) “in -- Day (1-31).

long computeTT2000(¢ out -- CDF_TIME_TT2000 value.
year as double, ‘in -- Year (AD, e.g., 1994).
month as double, ‘in -- Month (1-12).

day as double, “in -- Day (1-31).

hour as double) ‘in -- Hour (0-23).

long computeTT2000(¢ out -- CDF_TIME_TT2000 value.
year as double, ‘in -- Year (AD, e.g., 1994).
month as double, ‘in -- Month (1-12).

day as double, “in -- Day (1-31).

hour as double, ‘in -- Hour (0-23).

minute as double) ‘in -- Minute (0-59).

long computeTT2000(¢ out -- CDF_TIME_TT2000 value.
year as double, ‘in -- Year (AD, e.g., 1994).
month as double, ‘in -- Month (1-12).

day as double, “in -- Day (1-31).

hour as double, ‘in -- Hour (0-23).

minute as double, ‘in -- Minute (0-59).

second as double) “in -- Second (0-59 or 0-60 if leap second).
long computeTT2000(¢ out -- CDF_TIME_TT2000 value.
year as double, ‘in -- Year (AD, e.g., 1994).
month as double, ‘in -- Month (1-12).

day as double, “in -- Day (1-31).

hour as double, ‘in -- Hour (0-23).

245

minute as double,
second as double,
msec as double)

long computeTT2000(
year as double,

month as double,

day as double,

hour as double,

minute as double,
second as double,
msec as double,

usec as double)

long computeTT2000(
year as double,

month as double,

day as double,

hour as double,

minute as double,
second as double,
msec as double,

usec as double,

nsec as double)

in -- Minute (0-59).
in -- Second (0-59 or 0-60 if leap second).
in -- Millisecond (0-999).

out -- CDF_TIME_TT2000 value.

in -- Year (AD, e.g., 1994).

in -- Month (1-12).

in -- Day (1-31).

in -- Hour (0-23).

in -- Minute (0-59).

in -- Second (0-59 or 0-60 if leap second).
in -- Millisecond (0-999).

in -- Microsecond (0-999).

out -- CDF_TIME_TT2000 value.

in -- Year (AD, e.g., 1994).

in -- Month (1-12).

in -- Day (1-31).

in -- Hour (0-23).

in -- Minute (0-59).

in -- Second (0-59 or 0-60 if leap second).
in -- Millisecond (0-999).

in -- Microsecond (0-999).

in -- Nanosecond (0-999).

computeTT2000 calculates a CDF_TIME_TT2000 value given the individual, UTC-based date/time components. If
an illegal component is detected, the value returned will be ILLEGAL TT2000 VALUE. The day componment can be
presented in day of the month or day of the year (DOY). If DOY form is used, the month componment must have a

value(s) of one (1).

NOTE: Even though this overloaded function uses double for all its parameter fields, all but the very last parameter
can not have a non-zero fractional part for simplifying the computation. An exception will be thrown if the rule is not

followed. For example, this call is allowed:

dm tt2000 as long = computeTT2000(2010.0, 10.0, 10.5)

But, this call will fail:

dim tt2000 as long = computeTT2000(2010.0, 10.0, 10.5, 12.5)

7.2 TT2000breakdown

void TT2000breakdown(

tt2000 as long,
year as double,
month as double,
day as double,
hour as double,
minute as double,
second as double,
msec as double,

246

“in -- The CDF_TIME TT2000.
¢ out -- Year (AD, e.g., 1994).
‘ out -- Month (1-12).

¢ out -- Day (1-31).

¢ out -- Hour (0-23).

¢ out -- Minute (0-59).

¢ out -- Second (0-59 or 0-60 if leap second).
¢ out -- Millisecond (0-999).

usec as double, ¢ out -- Microsecond (0-999).
nsec as double) ¢ out -- Nanosecond (0-999).

TT2000breakdown decomposes a CDF_TIME TT2000 value into the individual components.

7.3 EncodeTT2000

EncodeTT2000 is a overloaded function.

void encodeTT2000(
tt2000 as long ‘in -- The CDF_TIME_TT2000.
EpString as string) out -- The standard date/time string.

void encodeTT2000(

tt2000 as long ¢ in -- The CDF_TIME_TT2000.
epString as string. out -- The standard date/time string.
format as string) in -- The encoded string format.

encodeTT2000 encodes a CDF_TIME TT2000 value into the standard date/time UTC character string. The default
format of the string is in ISO 8601 format: yyyy-mm-ddT hh:mm:ss.mmmuuunnn where yyyy is the year
(1707-2292), mm is the month (01-12), dd is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-
59), ss is the second (0-59 or 0-60 if leap second), mmm is the millisecond (0-999), uuu is the microsecond (0-999) and
nnn is the nanosecond (0-999).

For a format of value 0, the encoded UTC string is DD-Mon-YYYY hh:mm:ss.mmmuuunnn, where DD is
the day of the month (1-31), Mon is the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), YYYY
is the year, hh is the hour (0-23), mm is the minute (0-59 or 0-60 if leap second), ss is the second (0-59), mmm is the
millisecond (0-999), uuu is the microsecond (0-999), and nnn is the nanosecond (0-999). The encoded string has a
length of TT2000 0 STRING_LEN (30).

For a format of value 1, the encoded UTC string is YYYYMMDD.ttttttttt, where YYYY is the year, MM is the
month (1-12) DD is the day of the month (1-31), and ttttttttt is sub-day.(0-999999999). The encoded string has a length
of TT2000 1 STRING_LEN (19).

For a format of value 2, the encoded UTC string is YYYYMMDDhhmmss, where YYYY is the year, MM is the
month (1-12) DD is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59),and ss is the second (0-
59 or 0-60 if leap second). The encoded string has a length of TT2000 2 STRING LEN (14).

For a format of value 3, the encoded UTC string is YYYY-MM-DDThh:mm:ss.mmmuuunnn, where YYYY
is the year, MM is the month (1-12), DD is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59
or 0-60 if leap second), ss is the second (0-59), mmm is the millisecond (0-999), uuu is the microsecond (0-999), and
nnn is the nanosecond (0-999). The encoded string has a length of TT2000_3 STRING_LEN (29).

247

7.4 ParseTT2000

long parseTT2000(¢ out -- CDF_TIME_ TT2000 value.
EpString as string) ‘in -- The standard date/time string.

parseTT2000 parses a standard date/time character string and returns a CDF_TIME TT2000 value. The format of the
string is that produced by the encodeTT2000 method described in Section 6.3. If an illegal field is detected in the
string the value returned will be ILLEGAL TT2000 VALUE.

7.5 CDFgetLastDateinLeapSecondsTable

void CDFgetLastDateinLeapSecondsTable(

year as integer out -- The year.
month as integer out -- The month.
day as integer) ¢ out -- The day.

3

3

CDFgetLastDateinLeapSecondsTable returns the last entry in the leap second table used by the CDF processing. This
date comes from the leap second table, either through an external text file, or the hard-coded table in the library code.
This information can tell whether the leap second table is up-to-date.

248

8 CDF Utility Methods

Several methods are created that are mainly used to decipher the strings and their corresponding constant values or vice
verse. All these APIs are defined as static methods in CDFUtils class. The constant values are defined in
CDFConstants class.

8.1 CDFFileExists

boolean CDFFileExists(‘ out -- The file existence flag.
filename as string) ¢ in -- The file name.

CDFFileExists method checks whether a CDF file by the given file name, with or without the .cdf extension, exists.
Even the file exists, CDFFileExists will not be able to verify whether it is a valid one. (Use CDFopen to validate it).

8.2 CDFgetChecksumValue

integer CDFgetChecksumValue(¢ out -- The checksum value.
checksum as string) ¢ in -- The file checksum type string.

CDFgetChecksumValue method returns the corresponding file checksum type value, based on the passed string. The
file checksum types and their values are as follows:

Type Value

NONE NO_CHECKSUM (0)
MD5 MD5_CHECKSUM (1)
OTHER OTHER_CHECKSUM

8.3 CDFgetCompressionTypeValue

3

integer CDFgetCompressionTypeValue(
compressionType as string)

out -- The compression type.
¢ in -- The compression type string.
CDFgetCompressionTypeValue method returns the corresponding compression type value, based on the passed string.
The compression types and values are as follows:

Type Value
NONE NO_COMPRESSION (0)

249

RLE RLE COMPRESSION (1)

Huffman HUFF_COMPRESSION (2)
Adaptive Huffman AHUFF_COMPRESSION (3)
GZIP GZIP_COMPRESSION (5)

8.4 CDFgetDataTypeValue

3

integer CDFgetDataTypeValue(
dataType as string)

out -- The data type.
‘ in -- The data type string.
CDFgetDataTypeValue method returns the corresponding data type value, based on the passed string. The data types
and their values are as follows:

Type Value

CDF_BYTE CDF_BYTE (41)
CDF_CHAR CDF_CHAR (51)
CDF_UCHAR CDF_UCHAR (52)
CDF_INT1 CDF_INT1 (1)
CDF_UINTI1 CDF_UINTI1 (11)
CDF_INT2 CDF_INT2 (2)
CDF_UINT2 CDF_UINT2 (12)
CDF_INT4 CDF_INT4 (4)
CDF_UINT4 CDF_UINT4 (14)
CDF_INT8 CDF_INTS8 (8)
CDF_REAL4 CDF_REALA4 (21)
CDF_FLOAT CDF_FLOAT (44)
CDF_REALS CDF_REALS (22)
CDF_DOUBLE CDF_DOUBLE (45)
CDF_EPOCH CDF_EPOCH (31)
CDF_EPOCHI16 CDF_EPOCHI16 (32)
CDF_TIME_TT2000 CDF_TIME_TT2000 (33)

8.5 CDFgetDecodingValue

3

integer CDFgetDecodingValue(
decoding as string)

out -- The decoding value.
‘ in -- The data decoding string.
CDFgetDecodingValue method returns the corresponding data decoding value, based on the passed string. The data
decodings and their values are as follows:

Type Value

NETWORK NETWORK DECODING (1)
SUN SUN_DECODING (2)

VAX VAX DECODING (3)
DECSTATION DECSTATION DECODING (4)
SGi SGi_DECODING (5)

IBMPC IBMPC_DECODING (6)
IBMRS IBMRS DECODING (7)

250

HOST HOST DECODING (8)

PPC PPC_DECODING (9)

HP HP DECODING (11)

NeXT NeXT DECODING (12)
ALPHAOSF1 ALPHAOSF1_DECODING (13)
ALPHAVMSd ALPHAVMSd DECODING (14)
ALPHAVMSg ALPHAVMSg DECODING (15)
ALPHAVMSi ALPHAVMSi DECODING (16)

8.6 CDFgetEncodingValue

3

out -- The encoding value.
in -- The data encoding string.

integer CDFgetEncodingValue(
encoding as string) ¢
CDFgetEncodingValue method returns the corresponding data encoding value, based on the passed string. The data
encodings and their values are as follows:

Type Value

NETWORK NETWORK ENCODING (1)
SUN SUN_ENCODING (2)

VAX VAX ENCODING (3)
DECSTATION DECSTATION_ENCODING (4)
SGi SGi_ENCODING (5)

IBMPC IBMPC_ENCODING (6)

IBMRS IBMRS_ENCODING (7)

HOST HOST_ENCODING (8)

PPC PPC_ENCODING (9)

HP HP_ENCODING (11)

NeXT NeXT_ENCODING (12)
ALPHAOSF1 ALPHAOSF1_ENCODING (13)
ALPHAVMSd ALPHAVMSd ENCODING (14)
ALPHAVMSg ALPHAVMSg ENCODING (15)
ALPHAVMSIi ALPHAVMSi_ENCODING (16)

8.7 CDFgetFormatValue

3

out -- The format value.
in -- The file format string.

integer CDFgetFormatValue(
format as string) ¢
CDFgetFormatValue method returns the corresponding file format value, based on the passed string. The file formats
and their values are as follows:

Type Value
SINGLE® SINGLE_FILE (1)
MULTI MULTI _FILE (2)

251

8.8 CDFgetMajorityValue

3

out -- The majority value.
in -- The data majority string.

integer CDFgetMajority Value(
majority as string) ¢
CDFgetMajorityValue method returns the corresponding file majority value, based on the passed string. The file
majorities and their values are as follows:

Type Value
ROW ROW_MAIJOR (1)
COLUMN COLUMN_MAIJOR (2)

8.9 CDFgetSparseRecordValue

3

out -- The sparse record value.
in -- The sparse record string.

integer CDFgetSparseRecordValue(
sparseRecord as string) ¢
CDFgetSparseRecordValue method returns the corresponding sparse record value, based on the passed string. The
sparse records types and their values are as follows:

Type Value

NONE NO_SPARSERECORDS (0)
PAD PAD SPARSERECORDS (1)
PREV PREV_SPARSERECORDS (2)

8.10 CDFgetStringChecksum

3

out -- The checksum string.
in -- The file checksum type.

string CDFgetStringChecksum(
checksum as integer) ¢
CDFgetStringChecksum method returns the corresponding file checksum string, based on the passed type. The file
checksum types and their values are the same as those defined in CDFgetChecksumValue method.

8.11 CDFgetStringCompressionType

3

out -- The compression string.
in -- The compression type.

string CDFgetStringCompressionType(
compressionType as integer)

3

CDFgetStringCompressionType method returns the corresponding compression type string, based on the passed type.
The file checksum types and their values are the same as those defined in CDFgetCompressionTypeValue method.

252

8.12 CDFgetStringDataType

3

out -- The data type string.
in -- The data type.

string CDFgetStringDataType(
dataType as integer) ¢
CDFgetStringDataType method returns the corresponding data type string, based on the passed type. The data types
and their values are the same as those in CDFgetDataTypeValue method:

8.13 CDFgetStringDecoding

3

out -- The decoding string.
in -- The data decoding type.

string CDFgetStringDecoding(
decoding as integer) ¢
CDFgetStringDecoding method returns the corresponding data decoding string, based on the passed type. The data
decodings and their values are as same as those defined in CDFgetDecodingValue:

8.14 CDFgetStringEncoding

3

out -- The encoding string.
in -- The data encoding type.

string CDFgetStringEncoding(
encoding as integer) ¢
CDFgetStringEncoding method returns the corresponding data encoding string, based on the passed type. The data
encodings and their values are the same as those defined in CDFgetEncodingValue method.

8.15 CDFgetStringFormat

3

out -- The format string.
in -- The file format type.

string CDFgetStringFormat(
format as integer) ¢
CDFgetStringFormat method returns the corresponding file format string, based on the passed type. The file formats
and their values are the same as those defined in CDFgetFormatValue method.:

8.16 CDFgetStringMajority

3

out -- The majority string.
in -- The data majority type.

string CDFgetStringMajority(
majority as integer)

3

CDFgetStringMajority method returns the corresponding file majority string, based on the passed type. The file
majorities and their values are the same as those defined in CDFgetMajorityValue method.

253

8.17 CDFgetStringSparseRecord

3

string CDFgetStringSparseRecord(
sparseRecord as integer)

out -- The sparse record string.
in -- The sparse record type.

3

CDFgetStringSparseRecord method returns the corresponding sparse record string, based on the passed type. The
sparse records types and their values are the same as those defined in CDFgetSparseRecordValue method.:

254

9 CDF Exception Methods

Several methods in the CDFexception class can be used to check what happens when an exception is thrown by the
CDFAPIs, and react to it if necessary. All these APIs are defined as static methods. CDFException inherits from VB’s
Exception class.

9.1 CDFgetCurrentStatus

integer CDFgetCurrentStatus() ¢ out -- The status.
CDFgetCurrentStatus method returns the status when an exception is detected. The status value should be a negative

value. Chapter 5 covers all possible status codes. Use the following CDFgetStatusMsg method to decipher what the
status means.

9.2 CDFgetStatusMsg

string CDFgetStatusMsg(* out -- The descriptive message.
status as integer) ¢ in -- The exception status.

CDFgetStatusMsg method returns the descriptive information of the passed status.

255

Appendix A

A.1 Introduction

A status code is returned from most CDF functions. The CDFConstants class contains the numerical values (constants)
for each of the status codes (and for any other constants referred to in the explanations). The method CDFerror can be
used within a program to inquire the explanation text for a given status code.

There are three classes of status codes: informational, warning, and error. The purpose of each is as follows:

Informational Indicates success but provides some additional information that may be of interest to an
application.

Warning Indicates that the method completed but possibly not as expected.

Error Indicates that a fatal error occurred and the function aborted.

Status codes fall into classes as follows:
Error codes < CDF_WARN < Warning codes < CDF_OK < Informational codes

CDF_OK indicates an unqualified success (it should be the most commonly returned status code). CDF_WARN is
simply used to distinguish between warning and error status codes.

A.2 Status Codes and Messages

The following list contains an explanation for each possible status code. Whether a particular status code is considered
informational, a warning, or an error is also indicated.

ATTR_EXISTS Named attribute already exists - cannot create or rename. Each
attribute in a CDF must have a unique name. Note that trailing
blanks are ignored by the CDF library when comparing attribute
names. [Error]

ATTR _NAME TRUNC Attribute name truncated to CDF ATTR NAME LEN256
characters. The attribute was created but with a truncated name.
[Warning]

BAD ALLOCATE RECS An illegal number of records to allocate for a variable was

specified. For RV variables the number must be one or greater.
For NRV variables the number must be exactly one. [Error]

BAD ARGUMENT An illegal/undefined argument was passed. Check that all
arguments are properly declared and initialized. [Error]

257

BAD _ATTR_NAME

BAD _ATTR_NUM

BAD_ BLOCKING FACTOR?*

BAD CACHESIZE

BAD_CDF_EXTENSION

BAD_CDF_ID

BAD_CDF_NAME

BAD_INT

BAD_CHECKSUM

BAD_COMPRESSION _PARM

BAD DATA_TYPE

BAD DECODING

BAD_DIM_COUNT

BAD_DIM_INDEX

BAD DIM_INTERVAL

BAD_DIM_SIZE

Illegal attribute name specified. Attribute names must contain at
least one character, and each character must be printable. [Error]

Illegal attribute number specified. Attribute numbers must be
zero (0) or greater for C applications and one (1) or greater for
Fortran applications. [Error]

An illegal blocking factor was specified. Blocking factors must
be at least zero (0). [Error]

An illegal number of cache buffers was specified. The value
must be at least zero (0). [Error]

An illegal file extension was specified for a CDF. In general, do
not specify an extension except possibly for a single-file CDF
that has been renamed with a different file extension or no file
extension. [Error]

CDF identifier is unknown or invalid. The CDF identifier
specified is not for a currently open CDF. [Error]

Illegal CDF name specified. CDF names must contain at least
one character, and each character must be printable. Trailing
blanks are allowed but will be ignored. [Error]

Unknown CDF status code received. The CDF library does not
use the status code specified. [Error]

An illegal checksum mode received. It is invalid or currently not
supported. [Error]

An illegal compression parameter was specified. [Error]

An unknown data type was specified or encountered. The CDF
data types are defined in CDFConstants class for VB
applications. [Error]

An unknown decoding was specified. The CDF decodings are
defined in CDFConstants class for VB applications. [Error]

Illegal dimension count specified. A dimension count must be at
least one (1) and not greater than the size of the dimension.
[Error]

One or more dimension index is out of range. A valid value must
be specified regardless of the dimension variance. Note also that
the combination of dimension index, count, and interval must not
specify an element beyond the end of the dimension. [Error]

Illegal dimension interval specified. Dimension intervals must be
at least one (1). [Error]

Illegal dimension size specified. A dimension size must be at
least one (1). [Error]

** The status code BAD_BLOCKING_FACTOR was previously named BAD EXTEND RECS.

258

BAD ENCODING

BAD_ENTRY NUM

BAD _FNC_OR_ITEM

BAD _FORMAT

BAD_INITIAL_RECS

BAD MAJORITY

BAD_MALLOC

BAD_NEGtoPOSfp0 MODE

BAD _NUM_DIMS

BAD NUM_ELEMS

BAD NUM_VARS

BAD READONLY_ _MODE

BAD_REC_COUNT

BAD REC_INTERVAL

BAD _REC_NUM

BAD_SCOPE

Unknown data encoding specified. The CDF encodings are
defined in CDFConstants class for VB applications. [Error]

Illegal attribute entry number specified. Entry numbers must be
at least zero (0) for VB applications. [Error]

The specified function or item is illegal. Check that the proper
number of arguments are specified for each operation being
performed. [Error]

Unknown format specified. The CDF formats are defined in
CDFConstants class for VB applications. [Error]

An illegal number of records to initially write has been specified.
The number of initial records must be at least one (1). [Error]

Unknown variable majority specified. =~ The CDF variable
majorities are defined in CDFConstants class for VB
applications. [Error]

Unable to allocate dynamic memory - system limit reached.
Contact CDF User Support if this error occurs. [Error]

An illegal -0.0 to 0.0 mode was specified. The -0.0 to 0.0 modes
are defined in CDFConstants class for VB applications. [Error]

The number of dimensions specified is out of the allowed range.
Zero (0) through CDF_ MAX DIMS dimensions are allowed. If
more are needed, contact CDF User Support. [Error]

The number of elements of the data type is illegal. The number
of elements must be at least one (1). For variables with a non-
character data type, the number of elements must always be one
(1). [Error]

Illegal number of variables in a record access operation. [Error]

Illegal read-only mode specified. The CDF read-only modes are
defined in CDFConstants class for VB applications. [Error]

Illegal record count specified. A record count must be at least
one (1). [Error]

Illegal record interval specified. A record interval must be at
least one (1). [Error]

Record number is out of range. Record numbers must be at least
zero (0) for C applications and at least one (1) for Fortran
applications. Note that a valid value must be specified regardless
of the record variance. [Error]

Unknown attribute scope specified. The attribute scopes are
defined in CDFConstants class for VB applications. [Error]

259

BAD_SCRATCH_DIR

BAD SPARSEARRAYS PARM

BAD VAR _NAME

BAD VAR _NUM

BAD_zMODE

CANNOT_ALLOCATE_RECORDS

CANNOT_CHANGE

An illegal scratch directory was specified. The scratch directory
must be writeable and accessible (if a relative path was specified)
from the directory in which the application has been executed.
[Error]

An illegal sparse arrays parameter was specified. [Error]

Illegal variable name specified. Variable names must contain at
least one character and each character must be printable. [Error]

Illegal variable number specified. Variable numbers must be
zero (0) or greater for VB applications. [Error]

Illegal zMode specified. The CDF zModes are defined in
CDFConstants class for VB applications. [Error]

Records cannot be allocated for the given type of variable (e.g., a
compressed variable). [Error]

Because of dependencies on the value, it cannot be changed.
Some possible causes of this error follow:

1. Changing a CDF's data encoding after a variable value
(including a pad value) or an attribute entry has been
written.

N

. Changing a CDF's format after a variable has been created
or if a compressed single-file CDF.

3. Changing a CDF's variable majority after a variable value
(excluding a pad value) has been written.

4. Changing a variable's data specification after a value
(including the pad value) has been written to that variable
or after records have been allocated for that variable.

5. Changing a variable's record variance after a value
(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

6. Changing a variable's dimension variances after a value
(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

7. Writing “initial” records to a variable after a value
(excluding the pad value) has already been written to that
variable.

8. Changing a variable's blocking factor when a compressed
variable and a value (excluding the pad value) has been
written or when a variable with sparse records and a
value has been accessed.

9. Changing an attribute entry's data specification where the
ging ry p

new specification is not equivalent to the old
specification.

260

CANNOT_COMPRESS

CANNOT_SPARSEARRAYS

CANNOT_SPARSERECORDS

CDF_CLOSE ERROR

CDF_CREATE_ERROR

CDF_DELETE_ERROR

CDF_EXISTS

CDF_INTERNAL ERROR

CDF_NAME_TRUNC

CDF_OK

CDF OPEN_ERROR

CDF_READ_ERROR

CDF_WRITE_ERROR

CHECKSUM_ERROR

CHECKSUM_NOT_ALLOWED

The CDF or variable cannot be compressed. For CDFs, this
occurs if the CDF has the multi-file format. For variables, this
occurs if the variable is in a multi-file CDF, values have been
written to the variable, or if sparse arrays have already been
specified for the variable. [Error]

Sparse arrays cannot be specified for the variable. This occurs if
the variable is in a multi-file CDF, values have been written to
the variable, records have been allocated for the variable, or if
compression has already been specified for the variable. [Error]

Sparse records cannot be specified for the variable. This occurs
if the variable is in a multi-file CDF, values have been written to
the variable, or records have been allocated for the variable.
[Error]

Error detected while trying to close CDF. Check that sufficient
disk space exists for the dotCDF file and that it has not been
corrupted. [Error]

Cannot create the CDF specified - error from file system. Make
sure that sufficient privilege exists to create the dotCDF file in
the disk/directory location specified and that an open file quota
has not already been reached. [Error]

Cannot delete the CDF specified - error from file system.
Insufficient privileges exist the delete the CDF file(s). [Error]

The CDF named already exists - cannot create it. The CDF
library will not overwrite an existing CDF. [Error]

An unexpected condition has occurred in the CDF library. Report
this error to CDFsupport. [Error]

CDF file name truncated to CDF PATHNAME LEN characters.
The CDF was created but with a truncated name. [Warning]

Function completed successfully.

Cannot open the CDF specified - error from file system. Check
that the dotCDF file is not corrupted and that sufficient privilege
exists to open it. Also check that an open file quota has not

already been reached. [Error]

Failed to read the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

Failed to write the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

The data integrity verification through the checksum failed.
[Error]

The checksum is not allowed for old versioned files. [Error]

261

COMPRESSION ERROR

CORRUPTED_V2_CDF

DECOMPRESSION_ERROR

DID_NOT_COMPRESS

EMPTY COMPRESSED CDF

END OF VAR

FORCED PARAMETER

IBM_PC_OVERFLOW

ILLEGAL EPOCH VALUE

ILLEGAL FOR_SCOPE

ILLEGAL_IN_zMODE

ILLEGAL ON_VI1_CDF

MULTI FILE FORMAT

NA_FOR_VARIABLE

An error occurred while compressing a CDF or block of variable
records. This is an internal error in the CDF library. Contact
CDF User Support. [Error]

This Version 2 CDF is corrupted. An error has been detected in
the CDF's control information. If the CDF file(s) are known to
be valid, please contact CDF User Support. [Error]

An error occurred while decompressing a CDF or block of
variable records. The most likely cause is a corrupted dotCDF
file. [Error]

For a compressed variable, a block of records did not compress to
smaller than their uncompressed size. They have been stored
uncompressed. This can result If the blocking factor is set too
low or if the characteristics of the data are such that the
compression algorithm chosen is unsuitable. [Informational]

The compressed CDF being opened is empty. This will result if a
program, which was creating/modifying, the CDF abnormally
terminated. [Error]

The sequential access current value is at the end of the variable.
Reading beyond the end of the last physical value for a variable is
not allowed (when performing sequential access). [Error]

A specified parameter was forced to an acceptable value (rather
than an error being returned). [Warning]

An operation involving a buffer greater than 64k bytes in size has
been specified for PCs running 16-bit DOS/Windows 3.*.
[Error]

Illegal component is detected in computing an epoch value or an
illegal epoch value is provided in decomposing an epoch value.
[Error]

The operation is illegal for the attribute's scope. For example,
only gEntries may be written for gAttributes - not rEntries or
zEntries. [Error]

The attempted operation is illegal while in zMode. Most
operations involving rVariables or rEntries will be illegal.
[Error]

The specified operation (i.e., opening) is not allowed on Version
1 CDFs. [Error]

The specified operation is not applicable to CDFs with the multi-
file format. For example, it does not make sense to inquire
indexing statistics for a variable in a multi-file CDF (indexing is
only used in single-file CDFs). [Informational]

The attempted operation is not applicable to the given variable.
[Warning]

262

NEGATIVE_FP_ZERO

NO_ATTR_SELECTED

NO_CDF_SELECTED

NO_DELETE_ACCESS

NO_ENTRY_SELECTED

NO_MORE_ACCESS

NO_PADVALUE_SPECIFIED

NO_STATUS SELECTED

NO_SUCH_ATTR

NO_SUCH_CDF

NO_SUCH_ENTRY
NO_SUCH_RECORD

NO_SUCH_VAR

NO_VAR_SELECTED

NO_VARS_IN_CDF

NO_WRITE_ACCESS

NOT_A_CDF

NOT A CDF OR NOT SUPPORTED

One or more of the values read/written are -0.0 (An illegal value
on VAXes and DEC Alphas running OpenVMS). [Warning]

An attribute has not yet been selected. First select the attribute on
which to perform the operation. [Error]

A CDF has not yet been selected. First select the CDF on which
to perform the operation. [Error]

Deleting is not allowed (read-only access). Make sure that
delete access is allowed on the CDF file(s). [Error]

An attribute entry has not yet been selected. First select the entry
number on which to perform the operation. [Error]

Further access to the CDF is not allowed because of a severe
error. If the CDF was being modified, an attempt was made to
save the changes made prior to the severe error. in any event, the
CDF should still be closed. [Error]

A pad value has not yet been specified. The default pad value is
currently being used for the variable. The default pad value was
returned. [Informational]

A CDF status code has not yet been selected. First select the
status code on which to perform the operation. [Error]

The named attribute was not found. Note that attribute names are
case-sensitive. [Error]

The specified CDF does not exist. Check that the file name
specified is correct. [Error]

No such entry for specified attribute. [Error]
The specified record does not exist for the given variable. [Error]

The named variable was not found. Note that variable names are
case-sensitive. [Error]

A variable has not yet been selected. First select the variable on
which to perform the operation. [Error]

This CDF contains no rVariables. The operation performed is
not applicable to a CDF with no rVariables. [Informational]

Write access is not allowed on the CDF file(s). Make sure that
the CDF file(s) have the proper file system privileges and
ownership. [Error]

Named CDF is corrupted or not actually a CDF. Contact CDF
User Support if you are sure that the specified file is a CDF that
should be readable by the CDF distribution being used. [Error]

This can occur if an older CDF distribution is being used to read
a CDF created by a more recent CDF distribution. Contact CDF

263

PRECEEDING _RECORDS ALLOCATED

READ ONLY DISTRIBUTION

READ ONLY_MODE

SCRATCH_CREATE_ERROR

SCRATCH DELETE ERROR

SCRATCH_READ_ERROR

SCRATCH_WRITE_ERROR

SINGLE_FILE_FORMAT

SOME ALREADY ALLOCATED

TOO_MANY_PARMS

TOO_MANY_VARS

UNKNOWN_COMPRESSION

UNKNOWN_SPARSENESS

UNSUPPORTED _OPERATION
VAR_ALREADY_ CLOSED

VAR_CLOSE_ERROR

VAR_CREATE_ERROR

User Support if you are sure that the specified file is a CDF that
should be readable by the CDF distribution being used. CDF is
backward compatible but not forward compatible. [Error]

Because of the type of variable, records preceding the range of
records being allocated were automatically allocated as well.
[Informational]

Your CDF distribution has been built to allow only read access to
CDFs. Check with your system manager if you require write

access. [Error]

The CDF is in read-only mode - modifications are not allowed.
[Error]

Cannot create a scratch file - error from file system. If a scratch
directory has been specified, ensure that it is writeable. [Error]

Cannot delete a scratch file - error from file system. [Error]
Cannot read from a scratch file - error from file system. [Error]
Cannot write to a scratch file - error from file system. [Error]
The specified operation is not applicable to CDFs with the single-
file format. For example, it does not make sense to close a

variable in a single-file CDF. [Informational]

Some of the records being allocated were already allocated.
[Informational]

A type of sparse arrays or compression was encountered having
too many parameters. This could be causes by a corrupted CDF
or if the CDF was created/modified by a CDF distribution more
recent than the one being used. [Error]

A multi-file CDF on a PC may contain only a limited number of
variables because of the 8.3 file naming convention of MS-DOS.
This consists of 100 rVariables and 100 zVariables. [Error]

An unknown type of compression was specified or encountered.
[Error]

An unknown type of sparseness was specified or encountered.
[Error]

The attempted operation is not supported at this time. [Error]

The specified variable is already closed. [Informational]

Error detected while trying to close variable file. Check that
sufficient disk space exists for the variable file and that it has not

been corrupted. [Error]

An error occurred while creating a variable file in a multi-file
CDF. Check that a file quota has not been reached. [Error]

264

VAR_DELETE_ERROR

VAR_EXISTS

VAR_NAME_TRUNC

VAR_OPEN_ERROR

VAR_READ_ERROR

VAR_WRITE_ERROR

VIRTUAL RECORD DATA

An error occurred while deleting a variable file in a multi-file
CDF. Check that sufficient privilege exist to delete the CDF
files. [Error]

Named variable already exists - cannot create or rename. Each
variable in a CDF must have a unique name (rVariables and
zVariables can not share names). Note that the CDF library when
comparing variable names ignores trailing blanks. [Error]

Variable name truncated to CDF VAR NAME LEN256
characters. The variable was created but with a truncated name.
[Warning]

An error occurred while opening variable file. Check that
sufficient privilege exists to open the variable file. Also make
sure that the associated variable file exists. [Error]

Failed to read variable as requested - error from file system.
Check that the associated file is not corrupted. [Error]

Failed to write variable as requested - error from file system.
Check that the associated file is not corrupted. [Error]

One or more of the records are virtual (never actually written to
the CDF). Virtual records do not physically exist in the CDF
file(s) but are part of the conceptual view of the data provided by
the CDF library. Virtual records are described in the Concepts
chapter in the CDF User's Guide. [Informational]

265

Appendix B

B.1 VB-CDF APIs

The APIs that have the TYPE symbol use a general form for dealing with data, either variable value(s) or attribute
entry, in various data type for input and output. TYPE can be specified either in VB basic value or string type (scalar
or array) for writing out and reading from a CDF. The VB base Object class can also be used to represent a data object
reading from a CDF, which will be a scalar or array of value or string type

integer CDFattrCreate (id, attrName, attrScope, attrNum)

id as long “in
attrName as string “in
attrScope as integer “in
attrNum as integer ‘ out
integer CDFattrEntrylnquire (id, attrNum, entryNum, dataType, numElements)

id as long “in
attrNum as integer “in
entryNum as integer “in
dataType as integer ‘ out
numElements as integer ‘ out
integer CDFattrGet (id, attrNum, entryNum, value)

id as long “in
attrNum as integer “in
entryNum as integer “in
value as TYPE ‘ out
integer CDFattrInquire (id, attrNum, attrName, attrScope, maxEntry)

id as long “in
attrNum as integer “in
attrName as string ‘ out
attrScope as integer ‘ out
maxEntry as integer ‘ out
integer CDFattrNum (id, attrName)

id as long “in
attrName as string “in
integer CDFattrPut (id, attrNum, entryNum, dataType, numElements, value)

id as long “in
attrNum as integer “in
entryNum as integer “in
dataType as integer “in
numElements as integer “in

267

value as TYPE

integer CDFattrRename (id, attrNum, attrName)
id as long

attrNum as integer

attrName as string

integer CDFclose (id)
id as long

integer CDFcloseCDF (id)
id as long

integer CDFcloserVar (id, varNum)
id as long
varNum as integer

integer CDFclosezVar (id, varNum)
id as long
varNum as integer

integer CDFconfirmAttrExistence (id, attrName)
id as long
attrName as string

integer CDFconfirmgEntryExistence (id, attrNum, entryNum)
id as long

attrNum as integer

entryNum as integer

integer CDFconfirmrEntryExistence (id, attrNum, entryNum)
id as long

attrNum as integer

entryNum as integer

integer CDFconfirmrVarExistence (id, varNum)
id as long
varNum as integer

integer CDFconfirmrVarPadValueExistence (id, varNum)
id as long
varNum as integer

integer CDFconfirmzEntryExistence (id, attrNum, entryNum)
id as long

attrNum as integer

entryNum as integer

integer CDFconfirmzVarExistence (id, varNum)
id as long
varNum as integer

integer CDFconfirmzVarPadValueExistence (id, varNum)

id as long
varNum as integer

268

in

in
in
in

in

in

in
in

in
in

in
in

in
in
in

in
in
in

in
in

in
in

in
in
in

in
in

in
in

integer CDFcreate (CDFname, numDims, dimSizes, encoding, majority, id)

CDFname as string “in
numDims as integer “in
dimSizes as integer() “in
encoding as integer “in
majority as integer “in
id as long ‘out

integer CDFcreateAttr (id, attrName, scope, attrNum)

id as long “in
attrName as string “in
scope as integer “in
attrNum as integer ‘ out
integer CDFcreateCDF (CDFname, id)

CDFname as string “in
id as long ‘ out
integer CDFcreaterVar (id, varName, dataType, numElements, recVary, dimVarys, varNum)

id as long “in
varName as string “in
dataType as integer “in
numElements as integer “in
recVary as integer “in
dimVarys as integer() “in
varNum as integer ‘ out

integer CDFcreatezVar (id, varName, dataType, numElements, numDims, dimSizes, recVary, dimVarys, varNum)

id as long “in
varName as string “in
dataType as integer “in
numElements as integer “in
numDims as integer “in
dimSizes as integer() “in
recVary as integer “in
dimVarys as integer() “in
varNum as integer ‘ out
integer CDFdelete (id)

id as long “in
integer CDFdeleteAttr (id, attrNum)

id as long “in
attrNum as integer “in
integer CDFdeleteAttrgEntry (id, attrNum, entryNum)

id as long “in
attrNum as integer “in
entryNum as integer “in
integer CDFdeleteAttrrEntry (id, attrNum, entryNum)

id as long “in
attrNum as integer “in
entryNum as integer “in

integer CDFdeleteAttrzEntry (id, attrNum, entryNum)

269

id as long
attrNum as integer
entryNum as integer

integer CDFdeleteCDF (id)
id as long

integer CDFdeleterVar (id, varNum)
id as long
varNum as integer

integer CDFdeleterVarRecords (id, varNum, startRec, endRec)
id as long

varNum as integer

startRec as integer

endRec as integer

integer CDFdeleterVarRecordsRenumber (id, varNum, startRec, endRec)
id as long

varNum as integer

startRec as integer

endRec as integer

integer CDFdeletezVar (id, varNum)
id as long
varNum as integer

integer CDFdeletezVarRecords (id, varNum, startRec, endRec)
id as long

varNum as integer

startRec as integer

endRec as integer

integer CDFdeletezVarRecordsRenumber (id, varNum, startRec, endRec)
id as long

varNum as integer

startRec as integer

endRec as integer

integer CDFdoc (id, version, release, text)
id as long

version as integer

release as integer

text as string

integer CDFerror (status, message)
status as integer
message as string

integer CDFgetAttrgEntry (id, attrNum, entryNum, value)
id as long

attrNum as integer

entryNum as integer

value as TYPE

integer CDFgetAttrgEntryDataType (id, attrNum, entryNum, dataType)

270

in
in
in

in

in
in

in
in
in
in

in
in
in
in

in
in

in
in
in
in

in
in
in
in

in

out
out
out

in
out

in
in
in
out

id as long

attrNum as integer
entryNum as integer
dataType as integer

integer CDFgetAttrgEntryNumElements (id, attrNum, entryNum, numElems)

id as long

attrNum as integer
entryNum as integer
numElems as integer

integer CDFgetAttrMaxgEntry (id, attrNum, entryNum)
id as long

attrNum as integer

entryNum as integer

integer CDFgetAttrMaxrEntry (id, attrNum, entryNum)
id as long

attrNum as integer

entryNum as integer

integer CDFgetAttrMaxzEntry (id, attrNum, entryNum)
id as long

attrNum as integer

entryNum as integer

integer CDFgetAttrName (id, attrNum, attrName)
id as long

attrNum as integer

attrName as string

integer CDFgetAttrNum (id, attrName)
id as long
attrName as string

integer CDFgetAttrrEntry (id, attrNum, entryNum, value)
id as long

attrNum as integer

entryNum as integer

value as TYPE

integer CDFgetAttrrEntryDataType (id, attrNum, entryNum, dataType)

id as long

attrNum as integer
entryNum as integer
dataType as integer

integer CDFgetAttrrEntryNumElements (id, attrNum, entryNum, numElems)

id as long

attrNum as integer
entryNum as integer
numElems as integer

integer CDFgetAttrScope (id, attrNum, scope)

id as long
attrNum as integer

271

in
in
in
out

in
in
in
out

in
in
out

in
in
out

in
in
out

in
in
out

in
in

in
in
in
out

in
in
in
out

in
in
in
out

in
in

scope as integer out

integer CDFgetAttrzEntry (id, attrNum, entryNum, value)

id as long “in
attrNum as integer “in
entryNum as integer “in
value as TYPE ‘ out

integer CDFgetAttrzEntryDataType (id, attrNum, entryNum, dataType)

id as long “in
attrNum as integer “in
entryNum as integer “in
dataType as integer ‘ out
integer CDFgetAttrzEntryNumElements (id, attrNum, entryNum, numElems)

id as long “in
attrNum as integer “in
entryNum as integer “in
numElems as integer ‘ out

integer CDFgetCacheSize (id, numBuffers)
id as long in
numBuffers as integer out

integer CDFgetChecksum (id, checksum)
id as long in
checksum as integer out

integer CDFgetCompression (id, compType, compParms, compPercent)
id as long in

compType as integer ‘ out
compParms as integer ‘ out
compPercent as integer ‘out

integer CDFgetCompressionCacheSize (id, numBuffers)
id as long in
numBuffers as integer out

integer CDFgetCompressionlnfo (cdfName, compType, compParms, compSize, uncompSize)
cdfName as string in

compType as integer ‘out
compParms as integer() ‘ out
compSize as long ‘out
uncompSize as long ‘out

integer CDFgetCopyright (id, copyright)
id as long in
copyright as string out

integer CDFgetDataTypeSize (dataType, numBytes)
dataType as integer in
numBytes as integer out

integer CDFgetDecoding (id, decoding)

id as long in
decoding as integer out

272

integer CDFgetEncoding (id, encoding)
id as long in
encoding as integer out

integer CDFgetFileBackward ()

integer CDFgetFormat (id, format)
id as long in

format as integer ‘ out
integer CDFgetLibraryCopyright (copyright)

copyright as string ‘ out
integer CDFgetLibraryVersion (version, release, increment, sublncrement)

version as integer ‘out
release as integer ‘ out
increment as integer ‘ out
subIncrement as string ‘ out

integer CDFgetLeapSecondLastUpdated (id, lastUpdated)
id as long in
lastUpdate as integer out

integer CDFgetMajority (id, majority)
id as long in
majority as integer out

integer CDFgetMaxWrittenRecNums (id, maxRecrVars, maxReczVars)

id as long in
maxRecrVars as integer out
maxReczVars as integer out

integer CDFgetName (id, name)
id as long in
name as string out

integer CDFgetNegtoPosfpOMode (id, negtoPosfp0)
id as long in

negtoPosfp0 as integer ‘ out
integer CDFgetNumAttrgEntries (id, attrNum, entries)

id as long “in
attrNum as integer “in
entries as integer ‘ out

integer CDFgetNumAttributes (id, numAttrs)
id as long in

numAttrs as integer ‘ out
integer CDFgetNumAttrrEntries (id, attrNum, entries)

id as long “in
attrNum as integer “in
entries as integer ‘ out

integer CDFgetNumAttrzEntries (id, attrNum, entries)

273

id as long
attrNum as integer
entries as integer

integer CDFgetNumgAttributes (id, numAttrs)
id as long
numAttrs as integer

integer CDFgetNumrVars (id, numVars)
id as long
numrVars as integer

integer CDFgetNumvAttributes (id, numAttrs)
id as long
numAttrs as integer

integer CDFgetNumzVars (id, numVars)
id as long
numzVars as integer

integer CDFgetReadOnlyMode (id, mode)
id as long
mode as integer

integer CDFgetrVarAllocRecords (id, varNum, allocRecs)

id as long
varNum as integer
allocRecs as integer

integer CDFgetrVarBlockingFactor (id, varNum, bf)
id as long

varNum as integer

bf as integer

integer CDFgetrVarCacheSize (id, varNum, numBuffers)

id as long
varNum as integer
numBuffers as integer

integer CDFgetrVarCompression (id, varNum, cType, cParms, cPercent)

id as long

varNum as integer
compType as integer
cParms as integer()
cPercent as integer

integer CDFgetrVarData (id, varNum, recNum, indices, value)

id as long

varNum as integer
recNum as integer
indices as integer()
value as TYPE

integer CDFgetrVarDataType (id, varNum, dataType)
id as long
varNum as integer

274

in
in
out

in
out

in
out

in
out

in
out

in
out

in
in
out

in
in
out

in
in
out

in
in
out
out
out

in
in
in
in
out

in
in

dataType as integer

integer CDFgetrVarsDimSizes (id, varNum, dimSizes)
id as long

varNum as integer

dimSizes as integer()

integer CDFgetrVarDimVariances (id, varNum, dimVarys)
id as long

varNum as integer

dimVarys as integer()

integer CDFgetrVarInfo (id, varNum, dataType, numElems, numDims, dimSizes)
id as long

varNum as integer

dataType as integer

numElems as integer

numDims as integer

dimSizes as integer()

integer CDFgetrVarMaxAllocRecNum (id, varNum, maxRec)
id as long

varNum as integer

maxRec as integer

integer CDFgetrVarMaxWrittenRecNum (id, varNum, maxRec)
id as long

varNum as integer

maxRec as integer

integer CDFgetrVarName (id, varNum, varName)
id as long

varNum as integer

varName as string

integer CDFgetrVarsNumDims (id, varNum, numDims)
id as long

varNum as integer

numDims as integer

integer CDFgetrVarNumElements (id, varNum, numElems)
id as long

varNum as integer

numElems as integer

integer CDFgetrVarNumRecsWritten (id, varNum, numRecs)
id as long

varNum as integer

numRecs as integer

integer CDFgetrVarPadValue (id, varNum, padValue)
id as long

varNum as integer

padValue as TYPE

integer CDFgetrVarRecordData (id, varNum, recNum, buffer)

275

out

in
in
out

in
in
out

in
in
out
out
out
out

in
in
out

in
in
out

in
in
out

in
in
out

in
in
out

in
in
out

in
in
out

id as long
varNum as integer
recNum as integer
buffer as TYPE

integer CDFgetrVarRecVariance (id, varNum, recVary)
id as long

varNum as integer

recVary as integer

integer CDFgetrVarReservePercent (id, varNum, percent)
id as long

varNum as integer

percent as integer

integer CDFgetrVarsDimSizes (id, dimSizes)
id as long
dimSizes as integer()

integer CDFgetrVarSeqData (id, varNum, value)
id as long

varNum as integer

value as TYPE

integer CDFgetrVarSeqPos (id, varNum, recNum, indices)
id as long

varNum as integer

recNum as integer

indices as integer()

integer CDFgetrVarsMaxWrittenRecNum (id, recNum)
id as long
recNum as integer

integer CDFgetrVarsNumDims (id, numDims)
id as long
numDims as integer

integer CDFgetrVarSparseRecords (id, varNum, sRecords)
id as long

varNum as integer

sRecords as integer

integer CDFgetStageCacheSize (id, numBuffers)
id as long
numBuffers as integer

integer CDFgetStatusText (status, text)
status as integer

text as string

integer CDFgetValidate ()

integer CDFgetVarNum (id, varName)

id as long
varName as string

276

in
in
in
out

in
in
out

in
in
out

in
out

in
in
out

in
in
out
out

in
out

in
out

in
in
out

in
out

in

out

in
in

integer CDFgetVersion (id, version, release, increment)
id as long in

version as integer ‘out
release as integer ‘ out
increment as integer ‘ out

integer CDFgetzMode (id, zMode)
id as long in

zMode as integer ‘ out
integer CDFgetzVarAllocRecords (id, varNum, allocRecs)

id as long “in
varNum as integer “in
allocRecs as integer ‘ out
integer CDFgetzVarBlockingFactor (id, varNum, bf)

id as long “in
varNum as integer “in
bf as integer ‘out
integer CDFgetzVarCacheSize (id, varNum, numBuffers)

id as long “in
varNum as integer “in
numBuffers as integer ‘ out
integer CDFgetzVarCompression (id, varNum, cType, cParms, cPercent)

id as long “in
varNum as integer “in
compType as integer ‘ out
cParms as integer() ‘out
cPercent as integer ‘out
integer CDFgetzVarData (id, varNum, recNum, indices, value)

id as long “in
varNum as integer “in
recNum as integer “in
indices as integer() “in
value as TYPE ‘ out
integer CDFgetzVarDataType (id, varNum, dataType)

id as long “in
varNum as integer “in
dataType as integer ‘ out
integer CDFgetzVarDimSizes (id, varNum, dimSizes)

id as long “in
varNum as integer “in
dimSizes as integer() ‘out
integer CDFgetzVarDimVariances (id, varNum, dimVarys)

id as long “in
varNum as integer “in
dimVarys as integer() ‘ out

integer CDFgetzVarInfo (id, varNum, dataType, numElems, numDims, dimSizes)

277

id as long

varNum as integer
dataType as integer
numElems as integer
numDims as integer
dimSizes as integer()

integer CDFgetzVarMaxAllocRecNum (id, varNum, maxRec)
id as long

varNum as integer

maxRec as integer

integer CDFgetzVarMaxWrittenRecNum (id, varNum, maxRec)

id as long
varNum as integer
maxRec as integer

integer CDFgetzVarName (id, varNum, varName)
id as long

varNum as integer

varName as string

integer CDFgetzVarNumDims (id, varNum, numDims)
id as long

varNum as integer

numDims as integer

integer CDFgetzVarNumElements (id, varNum, numElems)
id as long

varNum as integer

numElems as integer

integer CDFgetzVarNumRecsWritten (id, varNum, numRecs)
id as long

varNum as integer

numRecs as integer

integer CDFgetzVarPadValue (id, varNum, padValue)
id as long

varNum as integer

padValue as TYPE

integer CDFgetzVarRecordData (id, varNum, recNum, data)
id as long

varNum as integer

recNum as integer

data as TYPE

integer CDFgetzVarRecVariance (id, varNum, recVary)
id as long

varNum as integer

recVary as integer

integer CDFgetzVarReservePercent (id, varNum, percent)

id as long
varNum as integer

278

in
in
out
out
out
out

in
in
out

in
in
out

in
in
out

in
in
out

in
in
out

in
in
out

in
in
out

in
in
in
out

in
in
out

in
in

percent as integer out

integer CDFgetzVarSeqData (id, varNum, value)

id as long “in
varNum as integer “in
value as TYPE ‘ out

integer CDFgetzVarSeqPos (id, varNum, recNum, indices)

id as long “in
varNum as integer “in
recNum as integer ‘out
indices as integer() ‘ out

integer CDFgetzVarsMaxWrittenRecNum (id, recNum)
id as long in

recNum as integer ‘out
integer CDFgetzVarSparseRecords (id, varNum, sRecords)

id as long “in
varNum as integer “in
sRecords as integer ‘out

integer CDFhyperGetrVarData (id, varNum, recNum, recCount, reclnterval, indices, counts, intervals, buffer)

id as long “in
varNum as integer “in
recNum as integer “in
recCount as integer “in
recInterval as integer “in
indices as integer() “in
counts as integer() ‘in
intervals as integer() “in
buffer as TYPE ‘ out

integer CDFhyperGetzVarData (id, varNum, recNum, recCount, recInterval, indices, counts, intervals, buffer)

id as long “in
varNum as integer “in
recNum as integer “in
recCount as integer “in
recInterval as integer “in
indices as integer() “in
counts as integer() ‘in
intervals as integer() “in
buffer as TYPE ‘ out

integer CDFhyperPutrVarData (id, varNum, recNum, recCount, recInterval, indices, counts, intervals, buffer)

id as long “in
varNum as integer “in
recNum as integer “in
recCount as integer “in
recInterval as integer “in
indices as integer() “in
counts as integer() ‘in
intervals as integer() “in
buffer as TYPE “in

integer CDFhyperPutzVarData (id, varNum, recNum, recCount, recInterval, indices, counts, intervals, data)

279

id as long in

varNum as integer “in
recNum as integer “in
recCount as integer “in
recInterval as integer “in
indices as integer() “in
counts as integer() ‘in
intervals as integer() “in
data as TYPE “in

integer CDFinquire (id, numDims, dimSizes, encoding, majority, maxRec, numVars, numAttrs)

3

id as long in

numDims as integer ‘ out
dimSizes as integer() ‘out
encoding as integer ‘out
majority as integer ‘ out
maxRec as integer ‘ out
numVars as integer ‘out
numAttrs as integer ‘ out
integer CDFinquireAttr (id, attrNum, attrName, attrScope, maxgEntry, maxrEntry, maxzEntry)

id as long “in
attrNum as integer “in
attrName as string ‘ out
attrScope as integer ‘ out
maxgEntry as integer ‘ out
maxrEntry as integer ‘ out
maxzEntry as integer ‘ out
integer CDFinquireAttrgEntry (id, attrNum, entryNum, dataType, numElems)

id as long “in
attrNum as integer “in
entryNum as integer “in
dataType as integer ‘ out
numElems as integer ‘ out
integer CDFinquireAttrrEntry (id, attrNum, entryNum, dataType, numElems)

id as long “in
attrNum as integer “in
entryNum as integer “in
dataType as integer ‘ out
numElems as integer ‘ out
integer CDFinquireAttrzEntry (id, attrNum, entryNum, dataType, numElems)

id as long “in
attrNum as integer “in
entryNum as integer “in
dataType as integer ‘ out
numElems as integer ‘ out

integer CDFinquireCDF (id, numDims, dimSizes, encoding, majority, maxrRec, numrVars, maxzRec,
numzVars, numAttrs)
id as long “in

numDims as integer ‘ out
dimSizes as integer () ‘out
encoding as integer ‘out

280

majority as integer ‘ out
maxrRec as integer ‘out
numrVars as integer ‘ out
maxzRec as integer ‘ out
numzVars as integer ‘out
numAttrs as integer ‘ out

integer CDFinquirerVar (id, varNum, varName, dataType, numElems, numDims, dimSizes, recVary, dimVarys)

id as long “in

varNum as integer “in

varName as string ‘ out
dataType as integer ‘ out
numElems as integer ‘ out
numDims as integer ‘ out
dimSizes as integer() ‘out
recVary as integer ‘ out
dimVarys as integer() ‘ out

integer CDFinquirezVar (id, varNum, varName, dataType, numElems, numDims, dimSizes, recVary, dimVarys)

id as long “in
varNum as integer “in
varName as string ‘ out
dataType as integer ‘ out
numElems as integer ‘ out
numDims as integer ‘ out
dimSizes as integer() ‘out
recVary as integer ‘out
dimVarys as integer() ‘ out
integer CDFopen (CDFname, id)

CDFname as string “in
id as long ‘out
integer CDFopenCDF (CDFname, id)

CDFname as string “in
id as long ‘out
integer CDFselectCDF (id)

id as long “in
integer CDFputAttrgEntry (id, attrNum, entryNum, dataType, numElems, value)

id as long “in
attrNum as integer “in
entryNum as integer “in
dataType as integer “in
numElems as integer “in
value as TYPE ‘“in
integer CDFputAttrrEntry (id, attrNum, entryNum, dataType, numElems, value)

id as long “in
attrNum as integer “in
entryNum as integer “in
dataType as integer “in
numElems as integer “in
value as TYPE ‘“in

281

integer CDFputAttrzEntry (id, attrNum, entryNum, dataType, numElems, value)
id as long

attrNum as integer

entryNum as integer

dataType as integer

numElems as integer

value as TYPE

integer CDFputrVarData (id, varNum, recNum, indices, value)
id as long

varNum as integer

recNum as integer

indices as integer()

value as TYPE

integer CDFputrVarPadValue (id, varNum, padValue)
id as long

varNum as integer

padValue as TYPE

integer CDFputrVarRecordData (id, varNum, recNum, values)
id as long

varNum as integer

recNum as integer

values as TYPE

integer CDFputrVarSeqData (id, varNum, value)
id as long

varNum as integer

value as TYPE

integer CDFputzVarData (id, varNum, recNum, indices, value)
id as long

varNum as integer

recNum as integer

indices as integer()

value as TYPE

integer CDFputzVarPadValue (id, varNum, padValue)
id as long

varNum as integer

padValue as TYPE

integer CDFputzVarRecordData (id, varNum, recNum, values)
id as long

varNum as integer

recNum as integer

values as TYPE

integer CDFputzVarSeqData (id, varNum, value)
id as long

varNum as integer

value as TYPE

integer CDFrenameAttr (id, attrNum, attrName)
id as long

282

in
in
in
in
in
in

in
in
in
in
in

in
in
in

in
in
in
in

in
in
in

in
in
in
in
in

in
in
in

in
in
in
in

in
in
in

in

attrNum as integer
attrName as string

integer CDFrenamerVar (id, varNum, varName)
id as long

varNum as integer

varName as string

integer CDFrenamezVar (id, varNum, varName)
id as long

varNum as integer

varName as string

integer CDFselect (id)
id as long

integer CDFselectCDF (id)
id as long

integer CDFsetAttrgEntryDataSpec (id, attrNum, entryNum, dataType)
id as long

attrNum as integer

entryNum as integer

dataType as integer

integer CDFsetAttrrEntryDataSpec (id, attrNum, entryNum, dataType)
id as long

attrNum as integer

entryNum as integer

dataType as integer

integer CDFsetAttrScope (id, attrNum, scope)
id as long

attrNum as integer

scope as integer

integer CDFsetAttrzEntryDataSpec (id, attrNum, entryNum, dataType)
id as long

attrNum as integer

entryNum as integer

dataType as integer

integer CDFsetCacheSize (id, numBuffers)
id as long
numBuffers as integer

integer CDFsetChecksum (id, checksum)
id as long
checksum as integer

integer CDFsetCompression (id, compressionType, compressionParms)
id as long
compressionType as integer

compressionParms as integer()

integer CDFsetCompressionCacheSize (id, numBuffers)

283

in
in

in
in
in

in
in
in

in

in

in
in
in
in

in
in
in
in

in
in
in

in
in
in
in

in
in

in
in

in
in
in

id as long in
numBuffers as integer in

integer CDFsetDecoding (id, decoding)
id as long in
decoding as integer in

integer CDFsetEncoding (id, encoding)
id as long in
encoding as integer in

void CDFsetFileBackward (mode)
mode as integer in

integer CDFsetFormat (id, format)
id as long in
format as integer in

integer CDFsetLeapSecondLastUpdated (id, lastUpdated)
id as long in
lastUpdated as integer in

integer CDFsetMajority (id, majority)
id as long in
majority as integer in

integer CDFsetNegtoPosfpOMode (id, negtoPosfp0)
id as long in
negtoPosfp0 as integer in

integer CDFsetReadOnlyMode (id, readOnly)
id as long in

readOnly as integer in

integer CDFsetrVarAllocBlockRecords (id, varNum, firstRec, lastRec)

id as long “in

varNum as integer “in

firstRec as integer ‘in
g

lastRec as integer ‘in
g

integer CDFsetrVarAllocRecords (id, varNum, numRecs)

id as long “in
varNum as integer “in
numRecs as integer “in

integer CDFsetrVarBlockingFactor (id, varNum, bf)

id as long “in
varNum as integer “in
bf as integer “in

integer CDFsetrVarCacheSize (id, varNum, numBuffers)

id as long “in
varNum as integer “in
numBuffers as integer “in

integer CDFsetrVarCompression (id, varNum, compressionType, compressionParms)

284

id as long

varNum as integer
compressionType as integer
compressionParms as integer()

integer CDFsetrVarDataSpec (id, varNum, dataType)
id as long

varNum as integer

dataType as integer

integer CDFsetrVarDimVariances (id, varNum, dimVarys)
id as long

varNum as integer

dimVarys as integer()

integer CDFsetrVarlnitialRecs (id, varNum, initialRecs)
id as long

varNum as integer

initialRecs as integer

integer CDFsetrVarRecVariance (id, varNum, recVary)
id as long

varNum as integer

recVary as integer

integer CDFsetrVarReservePercent (id, varNum, reservePercent)

id as long
varNum as integer
reservePercent as integer

integer CDFsetrVarsCacheSize (id, numBuffers)
id as long
numBuffers as integer

integer CDFsetrVarSeqPos (id, varNum, recNum, indices)
id as long

varNum as integer

recNum as integer

indices as integer()

integer CDFsetrVarSparseRecords (id, varNum, sRecords)
id as long

varNum as integer

sRecords as integer

integer CDFsetStageCacheSize (id, numBuffers)
id as long
numBuffers as integer

void CDFsetValidate (mode)
mode as integer

integer CDFsetzMode (id, zMode)

id as long
zMode as integer

285

in
in
in
in

in
in
in

in
in
in

in
in
in

in
in
in

in
in
in

in
in

in
in
in
in

in
in
in

in
in

in

in
in

integer CDFsetzVarAllocBlockRecords (id, varNum, firstRec, lastRec)

id as long

varNum as integer
firstRec as integer
lastRec as integer

integer CDFsetzVarAllocRecords (id, varNum, numRecs)
id as long

varNum as integer

numRecs as integer

integer CDFsetzVarBlockingFactor (id, varNum, bf)
id as long

varNum as integer

bf as integer

integer CDFsetzVarCacheSize (id, varNum, numBuffers)
id as long

varNum as integer

numBuffers as integer

integer CDFsetzVarCompression (id, varNum, compressionType, compressionParms)

id as long

varNum as integer
compressionType as integer
compressionParms as integer()

integer CDFsetzVarDataSpec (id, varNum, dataType)
id as long

varNum as integer

dataType as integer

integer CDFsetzVarDimVariances (id, varNum, dimVarys)
id as long

varNum as integer

dimVarys as integer()

integer CDFsetzVarlInitialRecs (id, varNum, initialRecs)
id as long

varNum as integer

initialRecs as integer

integer CDFsetzVarRecVariance (id, varNum, recVary)
id as long

varNum as integer

recVary as integer

integer CDFsetzVarReservePercent (id, varNum, reservePercent)

id as long
varNum as integer
reservePercent as integer

integer CDFsetzVarsCacheSize (id, numBuffers)

id as long
numBuffers as integer

286

in
in
in
in

in
in
in

in
in
in

in
in
in

in
in
in
in

in
in
in

in
in
in

in
in
in

in
in
in

in
in
in

in
in

integer CDFsetzVarSeqPos (id, varNum, recNum, indices)

id as long “in
varNum as integer “in
recNum as integer “in
indices as integer() “in

integer CDFsetzVarSparseRecords (id, varNum, sRecords)

id as long “in
varNum as integer “in
sRecords as integer ‘in

integer CDFvarClose (id, varNum)
id as long in
varNum as integer in

integer CDFvarCreate (id, varName, dataType, numElements, recVariance, dimVariances, varNum)

id as long “in
varName as string “in
dataType as integer “in
yp g
numElements as integer “in
recVariance as integer “in
dimVariances as integer| “in
g

varNum as integer ‘ out
integer CDFvarGet (id, varNum, recNum, indices, value)

id as long “in
varNum as integer “in
recNum as integer “in
indices as integer() “in
value as TYPE ‘ out

integer CDFvarHyperGet (id, varNum, recStart, recCount, recInterval, indices, counts, intervals, buffer)

id as long “in
varNum as integer “in
recStart as integer “in
recCount as integer “in
recInterval as integer “in
indices as integer() “in
counts as integer() ‘in
intervals as integer() “in
buffer as TYPE ‘ out

integer CDFvarHyperPut (id, varNum, recStart, recCount, recInterval, indices, counts, intervals, buffer)

id as long “in
varNum as integer “in
recStart as integer “in
recCount as integer “in
recInterval as integer “in
indices as integer() “in
counts as integer() ‘in
intervals as integer() “in
buffer as TYPE “in

integer CDFvarlnquire (id, varNum, varName, dataType, numElements, recVariance, dimVariances)
id as long “in

¢

varNum as integer in

287

varName as string
dataType as integer
numElements as integer
recVariance as integer
dimVariances as integer()

integer CDFvarNum (id, varName)
id as long
varName as string

integer CDFvarPut (id, varNum, recNum, indices, value)

id as long

varNum as integer
recNum as integer
indices as integer()
value as TYPE

integer CDFvarRename (id, varNum, varName)
id as long

varNum as integer

varName as string

288

out
out
out
out
out

in
in

in
in
in
in
in

in
in
in

289

B.2 EPOCH Utility Methods

double computeEPOCH (year, month, day, hour, minute, second, msec)

year as integer “in
month as integer “in
day as integer “in
hour as integer “in
minute as integer “in
second as integer “in
msec as integer ‘in

void EPOCHbreakdown (epoch, year, month, day, hour, minute, second, msec)
epoch as double in

year as integer ¢ out
month as integer ¢ out
day as integer ¢ out
hour as integer ¢ out
minute as integer ¢ out
second as integer ¢ out
msec as integer ¢ out

void encodeEPOCH (epoch, epString)
epoch as double in
epString as string out

void encodeEPOCH1 (epoch, epString)
epoch as double in
epString as string out

void encodeEPOCH2 (epoch, epString)
epoch as double in
epString as string out

void encodeEPOCH3 (epoch, epString)
epoch as double in
epString as string out

void encodeEPOCH4 (epoch, epString)
epoch as double in

epString as string ¢ out
void encodeEPOCHx (epoch, format, epString)

epoch as double “in
format as string “in
epString as string ¢ out
double parseEPOCH (epString)

epString as string “in
double parseEPOCHI1 (epString)

epString as string “in

double parseEPOCH2 (epString)

291

epString as string in

double parseEPOCH3 (epString)
epString as string in

double parseEPOCH4 (epString)
epString as string “in

double computeEPOCHI16 (year, month, day, hour, minute, second, msec, microsec, nanosec, picosec)

year as integer “in
month as integer “in
day as integer “in
hour as integer “in
minute as integer “in
second as integer “in
msec as integer ‘in
microsec as integer “in
nanosec as integer “in
picosec as integer “in
epoch as double() ‘out

void EPOCHI16breakdown (epoch, year, month, day, hour, minute, second, msec, microsec, nanosec, picosec)

epoch as double()
year as integer
month as integer
day as integer
hour as integer
minute as integer
second as integer
msec as integer
microsec as integer
nanosec as integer
picosec as integer

void encodeEPOCHI16 (epoch, epString)

epoch as double()
epString as string

void encodeEPOCH16 1 (epoch,
epoch as double()
epString as string

void encodeEPOCH16 2 (epoch,
epoch as double()
epString as string

void encodeEPOCH16 3 (epoch,
epoch as double()
epString as string

void encodeEPOCH16 4 (epoch,
epoch as double()
epString as string

void encodeEPOCH16 x (epoch,
epoch as double()

epString)

epString)

epString)

epString)

format, epString)

292

3

n
out
out
out
out
out
out
out
out
out
out

in
out

in
out

in
out

in
out

in
out

in

format as string
epString as string

double parseEPOCH16 (epString, epoch)

epString as string
epoch as double()

double parseEPOCH16 1 (epString)
epString as string
epoch as double()

double parseEPOCH16 2 (epString)
epString as string
epoch as double()

double parseEPOCH16 3 (epString)
epString as string
epoch as double()

double parseEPOCH16 4 (epString)
epString as string
epoch as double()

long computeTT2000 (year, month,
year as double

month as double

day as double

long computeTT2000 (year, month,
year as double

month as double

day as double

hour as double

long computeTT2000 (year, month,
year as double

month as double

day as double

hour as double

minute as double

long computeTT2000 (year, month,
year as double

month as double

day as double

hour as double

minute as double

second as double

long computeTT2000 (year, month,
year as double

month as double

day as double

hour as double

minute as double

day)

day,

day,

day,

day,

hour)

hour, minute)

hour, minute, second)

hour, minute, second, msec)

293

in
out

in
out

in
out

in
out

in
out

in
out

in
in
in

in
in
in
in

in
in
in
in
in

in
in
in
in
in
in

in
in
in
in
in

second as double in
msec as double in

long computeTT2000 (year, month, day, hour, minute, second, msec, usec)

year as double “in
month as double ‘in
day as double “in
hour as double ‘in
minute as double ‘in
second as double ‘in
msec as double ‘in
usec as double ‘in

long computeTT2000 (year, month, day, hour, minute, second, msec, usec, nsec)

year as double “in
month as double ‘in
day as double “in
hour as double ‘in
minute as double ‘in
second as double ‘in
msec as double ‘in
usec as double ‘in
nsec as double ‘in

void TT2000breakdown (epoch, year, month, day, hour, minute, second, msec, usec, nsec)
epoch as long in

year as double ¢ out
month as double ‘ out
day as double ¢ out
hour as double ¢ out
minute as double ‘ out
second as double ‘ out
msec as double ‘ out
usec as double ‘ out
nsec as double ‘ out
void encodeTT2000 (epoch, epString, format)

epoch as long ‘in
epString as string ¢ out
format as string “in
long parseTT2000 (epString)

epString as string “in
void CDFgetLastDateinLeapSecondsTable (year, month, day)

year as integer ‘ out
month as integer ‘ out
day as integer ‘out

294

B.3 CDF Utility Methods

boolean CDFFileExists (fileName)
filename as string

integer CDFgetChecksumValue(checksum)
fileName as string

integer CDFgetCompressionTypeValue(compressionType)
compressionType as string

integer CDFgetDataTypeValue(dataType)
dataType as string

integer CDFgetDecodingValue(decoding)
decoding as string

integer CDFgetEncodingValue(encoding)
encoding as string

integer CDFgetFormatValue(format)
format as string

integer CDFgetMajorityValue(majority)
majority as string

integer CDFgetSparseRecordValue(sparseRecord)
sparseRecord as string

string CDFgetStringChecksum(checksum)
checksum as integer

string CDFgetStringCompressionType(compressionType)
compressionType as integer

string CDFgetStringDataType(dataType)
dataType as integer

string CDFgetStringDecoding(decoding)
decoding as integer

string CDFgetStringEncoding(encoding)
encoding as integer

string CDFgetStringFormat(format)
format as integer

string CDFgetStringMajority(majority)
majority as integer

string CDFgetStringSparseRecord(sparseRecord)
sparseRecord as integer

295

in

in

in

in

in

in

in

in

in

in

in

in

in

in

in

in

in

B.4 CDF Exception Methods

integer CDFgetCurrentStatus ()

string CDFgetStatusMsg(status)
status as integer

296

Index

ALPHAOSF1 _DECODING, 9
ALPHAOSF1_ENCODING, 8
ALPHAVMSd DECODING, 9
ALPHAVMSd _ENCODING, 8
ALPHAVMSg DECODING, 9
ALPHAVMSg ENCODING, 8
ALPHAVMSi DECODING, 9
ALPHAVMSi ENCODING, 8
attribute
inquiring, 188
number
inquiring, 190
renaming, 192
Attributes
entries
global entry
deleting, 198
reading, 201
attributes
checking existence, 193
creation, 184, 196
deleting, 197
entries
rVariable entry
deleting, 199
entries
global entries
number of
inquiring, 216
global entry
checking existence, 194
data specification
resetting, 231
data type
inquiring, 202, 210
inquiring, 223
last entry number
inquiring, 204
number of elements
inquiring, 203, 211
writing, 226
inquiring, 185
reading, 187
rEntries
number of
inquiring, 218
rVariable entry
checking existence, 194
data specification
resetting, 232
inquiring, 224
last entry number
inquiring, 205

297

reading, 209
writing, 228
writing, 190
zEntries
number of
inquiring, 219
zVariable entry
checking existence, 195
data specification
resetting, 234
data type
inquiring, 214
deleting, 200
inquiring, 225
last entry number
inquiring, 206
number of elements
inquiring, 215
reading, 213
writing, 229
inquiring, 221
name
inquiring, 207
naming, 13, 185, 197
inquiring, 189
number
inquiring, 208
number of
inquiring, 52, 217
renaming, 230
scope
inquiring, 212
resetting, 233
scopes
constants, 12
GLOBAL_SCOPE, 12
VARIABLE SCOPE, 12
inquiring, 188, 221

CDF

backward file, 13
backward file flag
getting, 14
setting, 14
cache size
compression
resetting, 61
Checksum, 14
closing, 29
Copyright
inquiring, 41
creation, 31
deleting, 33, 34
exception methods, 255

Long Integer, 16 CDF_PATHNAME LEN, 13

opening, 55, 56 CDF_REALA4,7
selecting, 57, 58 CDF _REALS, 7
set CDF_STATUSTEXT LEN, 13
majority, 66 CDF_TIME_TT2000, 7
utility methods, 249 CDF_UCHAR, 6
Validation, 15 CDF_UINT1, 6
CDF getNegtoPosfpOMode, 47 CDF_UINT2, 6
CDF library CDF_UINT4, 7
copy right notice CDF_VAR NAME LEN256, 13
max length, 13 CDF_WARN, 6
modes CDFattrCreate, 184
-0.0t0 0.0 CDFattrEntryInquire, 185
constants CDFattrGet, 187

NEGtoPOSfpOoft, 13
NEGtoPOSfpOon, 13

CDFattrInquire, 188
CDFattrNum, 190

decoding CDFattrPut, 190
constants CDFattrRename, 192
ALPHAOSF1 _DECODING, 9 CDFclose, 29

ALPHAVMSd DECODING, 9
ALPHAVMSg DECODING, 9
ALPHAVMSi DECODING, 9

DECSTATION_DECODING, 9

CDFcloseCDF, 30
CDFcloserVar, 71
CDFclosezVar, 72
CDFconfirmAttrExistence, 193

HOST_DECODING, 9
HP DECODING, 9
IBMRS_DECODING, 9
MAC_DECODING, 9

NETWORK DECODING, 9

NeXT DECODING, 9
PC_DECODING, 9
SGi_DECODING, 9
SUN_DECODING, 9
VAX DECODING, 9
MegToPosFpOMode
selecting, 13
read-only
constants
READONLYoff, 12
READONLYon, 12
selecting, 12
zMode
constants
zMODEOoff, 12
zMODEonl, 12
zMODEon2, 12
selecting, 12
CDF setNegtoPosfpOMode, 67
CDF_ATTR NAME LEN256, 13
CDF _BYTE, 6
CDF_CHAR, 6
CDF_COPYRIGHT _LEN, 13
CDF_DOUBLE, 7
CDF_EPOCH, 7
CDF_EPOCHI16, 7
CDF_FLOAT, 7
CDF_INTI, 6
CDF_INT2, 6
CDF_INT4, 6
CDF_INTS, 7
CDF_MAX DIMS, 13
CDF_MAX PARMS, 13
CDF_OK, 6

298

CDFconfirmgEntryExistence, 194
CDFconfirmrEntryExistence, 194
CDFconfirmrVarExistence, 73

CDFconfirmrVarPadValueExistence, 73

CDFconfirmzEntryExistence, 195
CDFconfirmzVarExistence, 74

CDFconfirmzVarPadValueExistence, 75

CDFcreate, 31
CDFcreateAttr, 196
CDFcreateCDF, 32
CDFcreaterVar, 76
CDFcreatezVar, 78
CDFdelete, 33
CDFdeleteAttr, 197
CDFdeleteAttrgEntry, 198
CDFdeleteAttrrEntry, 199
CDFdeleteAttrzEntry, 200
CDFdeleteCDF, 34
CDFdeleterVar, 79
CDFdeleterVarRecords, 80, 81
CDFdeletezVar, 82
CDFdeletezVarRecords, 83, 84
CDFdoc, 35
CDFerror, 257
CDFerror, 36
CDFException
CDFgetCurrentStatus, 255
CDFgetStatusMsg, 255
utility methods
CDFgetCurrentStatus, 255
CDFgetStatusMsg, 255
CDFFileExists, 249
CDFgetAttrgEntry, 201
CDFgetAttrgEntryDataType, 202
CDFgetAttrMaxrEntry, 205
CDFgetAttrMaxzEntry, 206
CDFgetAttrName, 207
CDFgetAttrNum, 208
CDFgetAttrrEntry, 209

CDFgetAttrrEntryDataType, 210
CDFgetAttrrEntryNumElements, 211
CDFgetAttrScope, 212
CDFgetAttrzEntry, 213
CDFgetAttrzEntryDataType, 214
CDFgetAttrzEntryNumElements, 215
CDFgetCacheSize, 37
CDFgetChecksumValue, 249
CDFgetCkecksum, 37
CDFgetCompression, 38
CDFgetCompressionCacheSize, 39
CDFgetCompressionInfo, 40
CDFgetCompressionTypeValue, 249
CDFgetCopyright, 41
CDFgetCurrentStatus, 255
CDFgetDataTypeSize, 26
CDFgetDataTypeValue, 250
CDFgetDecoding, 42
CDFgetDecodingValue, 250
CDFgetEncoding, 42
CDFgetEncodingValue, 251
CDFgetFileBackward, 43
CDFgetFormat, 44, 45
CDFgetFormatValue, 251
CDFgetLastDateinLeapSecondsTable, 248
CDFgetLibraryCopyright, 27
CDFgetLibraryVersion, 27
CDFgetMajority, 46
CDFgetMajorityValue, 252
CDFgetMaxWrittenRecNums, 85
CDFgetName, 46
CDFgetNumAttrgEntries, 216
CDFgetNumAttributes, 217
CDFgetNumAttrrEntries, 218
CDFgetNumAttrzEntries, 219
CDFgetNumgAttributes, 219
CDFgetNumrVars, 86
CDFgetNumvAttributes, 220
CDFgetNumzVars, 87
CDFgetReadOnlyMode, 48
CDFgetrVarAllocRecords, 88
CDFgetrVarBlockingFactor, 88
CDFgetrVarCacheSize, 89
CDFgetrVarCompression, 90
CDFgetrVarData, 91
CDFgetrVarDataType, 92
CDFgetrVarDimVariances, 93
CDFgetrVarlnfo, 94
CDFgetrVarMaxAllocRecNum, 95
CDFgetrVarMaxWrittenRecNum, 96
CDFgetrVarName, 97
CDFgetrVarNumElements, 98
CDFgetrVarNumRecsWritten, 99
CDFgetrVarPadValue, 99
CDFgetrVarRecordData, 100
CDFgetrVarRecVariance, 101
CDFgetrVarReservePercent, 102
CDFgetrVarsDimSizes, 103
CDFgetrVarSeqData, 104
CDFgetrVarSeqPos, 105
CDFgetrVarsMaxWrittenRecNum, 106
CDFgetrVarsNumDims, 107

299

CDFgetrVarSparseRecords, 107
CDFgetSparseRecordValue, 252
CDFgetStageCacheSize, 49
CDFgetStatusMsg, 255
CDFgetStatusText, 28
CDFgetStringChecksum, 252
CDFgetStringCompressionType, 252
CDFgetStringDataType, 253
CDFgetStringDecoding, 253
CDFgetStringEncoding, 253
CDFgetStringFormat, 253
CDFgetStringMajority, 253
CDFgetStringSparseRecord, 254
CDFgetValidae, 50
CDFgetVarNum, 108
CDFgetVersion, 50
CDFgetzMode, 51
CDFgetzVarAllocRecords, 109
CDFgetzVarBlockingFactor, 110
CDFgetzVarCacheSize, 111
CDFgetzVarCompression, 112
CDFgetzVarData, 113
CDFgetzVarDataType, 114
CDFgetzVarDimSizes, 115
CDFgetzVarDimVariances, 116
CDFgetzVarlnfo, 117
CDFgetzVarMaxAllocRecNum, 118
CDFgetzVarMaxWrittenRecNum, 119
CDFgetzVarName, 120
CDFgetzVarNumDims, 120
CDFgetzVarNumElements, 121
CDFgetzVarNumRecsWritten, 122
CDFgetzVarPadValue, 123
CDFgetzVarRecordData, 124
CDFgetzVarRecVariance, 125
CDFgetzVarReservePercent, 126
CDFgetzVarSeqData, 127
CDFgetzVarSeqPos, 128
CDFgetzVarsMaxWrittenRecNum, 128
CDFgetzVarSparseRecords, 129
CDFhyperGetrVarData, 130
CDFhyperGetzVarData, 132
CDFhyperPutrVarData, 134
CDFhyperPutzVarData, 135
CDFinquire, 52

CDFinquireAttr, 221
CDFinquireAttrgEntry, 223
CDFinquireAttrrEntry, 224
CDFinquireAttrzEntry, 225
CDFinquireCDF, 53
CDFinquirerVar, 137
CDFinquirezVar, 139

CDFopen, 55

CDFopenCDF, 56
CDFputAttrgEntry, 226
CDFputAttrrEntry, 228
CDFputAttrzEntry, 229
CDFputrVarData, 140
CDFputrVarPadValue, 141
CDFputrVarRecordData, 142
CDFputrVarSeqData, 143
CDFputzVarData, 144

CDFputzVarPadValue, 146
CDFputzVarRecordData, 147
CDFputzVarSeqData, 148
CDFrenameAttr, 230
CDFrenamerVar, 149
CDFrenamezVar, 150
CDFs
compression
inquiring, 38, 40
CDFs
-0.0 to 0.0 mode
inquiring, 47
resetting, 67
browsing, 12
cache size
compression
inquiring, 39
inquiring, 37
resetting, 59
stage
inquiring, 49
resetting, 68
checksum
inquiring, 37
resetting, 60
closing, 30
compression
resetting, 60
compression types/parameters, 10
copy right notice
max length, 13
reading, 35
corrupted, 31, 32
creation, 32
decoding
inquiring, 42
resetting, 62
encoding
constants, 8
ALPHAOSF1_ENCODING, 8
ALPHAVMSd _ENCODING, 8
ALPHAVMSg ENCODING, 8
ALPHAVMSi ENCODING, 8
DECSTATION_ENCODING, 8
HOST_ENCODING, 8
HP_ENCODING, 8
IBMRS_ENCODING, 8
MAC_ENCODING, 8
NETWORK_ENCODING, 8
NeXT_ENCODING, 8
PC_ENCODING, 8
SGi_ENCODING, 8
SUN_ENCODING, 8
VAX ENCODING, 8
default, 8
inquiring, 52
resetting, 63
file backard
inquiring, 43
File Backward
resetting, 64
format

300

constants
MULTI_FILE, 6
SINGLE FILE, 6
default, 6
inquiring, 44, 45
resetting, 64, 65
global attributes
number of
inquiring, 219
inquiring, 53
majority
inquiring, 46
name
inquiring, 46
naming, 13, 31, 32, 55, 56
overwriting, 31, 32
read-only mode
inquiring, 48
resetting, 68
record numbers
maximum written
zVariables and rVariables, 85
rVariables
number of rVariables
inquiring, 86
validation
inquiring, 50
resetting, 69
variable attributes
number of
inquiring, 220
version
inquiring, 35, 50
zMode
inquiring, 51
resetting, 70
zVariables
number of zVariables
inquiring, 87
CDFselect, 57
CDFselectCDF, 58
CDFsetAttrgEntryDataSpec, 231
CDFsetAttrrEntryDataSpec, 232
CDFsetAttrScope, 233
CDFsetAttrzEntryDataSpec, 234
CDFsetCacheSize, 59
CDFsetChecksum, 60
CDFsetCompression, 60
CDFsetCompressionCacheSize, 61
CDFsetDecoding, 62
CDFsetEncoding, 63
CDFsetFileBackward, 64
CDFsetFormat, 64, 65
CDFsetMajority, 66
CDFsetReadOnlyMode, 68
CDFsetrVarAllocBlockRecords, 150
CDFsetrVarAllocRecords, 151
CDFsetrVarBlockingFactor, 152
CDFsetrVarCacheSize, 153
CDFsetrVarCompression, 154
CDFsetrVarDataSpec, 155
CDFsetrVarDimVariances, 156

CDFsetrVarlnitialRecs, 157 CDFvarHyperPut, 178

CDFsetrVarRecVariance, 158 CDFvarlnquire, 180
CDFsetrVarReservePercent, 158 CDFvarNum, 181
CDFsetrVarsCacheSize, 159 CDFvarPut, 182
CDFsetrVarSeqPos, 160 CDFvarRename, 183
CDFsetrVarSparseRecords, 161 Ckecksum, 37, 60
CDFsetStageCacheSize, 68 Classes, 1
CDFsetValidate, 69 closing
CDFsetzMode, 70 rVar in a multi-file CDF, 71
CDFsetzVarAllocBlockRecords, 162 zVar in a multi-file CDF, 72
CDFsetzVarAllocRecords, 163 COLUMN_MAIJOR, 10
CDFsetzVarBlockingFactor, 164 Compiling, 1, 2
CDFsetzVarCacheSize, 165 compression
CDFsetzVarCompression, 165 types/parameters, 10
CDFsetzVarDataSpec, 166 computeEPOCH, 236
CDFsetzVarDimVariances, 167 computeEPOCH16, 240
CDFsetzVarlnitialRecs, 168 computeTT2000, 245
CDFsetzVarRecVariance, 169 Data type
CDFsetzVarReservePercent, 170 size
CDFsetzVarsCacheSize, 171 inquiring, 26
CDFsetzVarSeqPos, 172 data types
CDFsetzVarSparseRecords, 173 constants, 6
CDFUtils CDF BYTE, 6
CDFFileExists, 249 CDF_CHAR, 6
CDFgetChecksumValue, 249 CDF _DOUBLE, 7
CDFgetCompressionTypeValue, 249 CDF_EPOCH, 7
CDFgetDataTypeValue, 250 CDF_EPOCHI16, 7
CDFgetDecodingValue, 250 CDF_FLOAT, 7
CDFgetEncodingValue, 251 CDF _INTI, 6
CDFgetFormatValue, 251 CDF_INT2, 6
CDFgetMajority Value, 252 CDF_INT4, 6
CDFgetSparseRecordValue, 252 CDF _INTS, 7
CDFgetStringChecksum, 252 CDF_REALA4, 7
CDFgetStringCompressionType, 252 CDF _REALS, 7
CDFgetStringDataType, 253 CDF_TIME TT2000, 7
CDFgetStringDecoding, 253 CDF _UCHAR, 6
CDFgetStringEncoding, 253 CDF _UINTI, 6
CDFgetStringFormat, 253 CDF_UINT2, 6
CDFgetStringMajority, 253 CDF_UINT4, 7
CDFgetStringSparseRecord, 254 DECSTATION DECODING, 9
utility methods DECSTATION_ENCODING, 8
CDFFileExists, 249 dimensions
CDFgetChecksumValue, 249 limit, 13
CDFgetCompressionTypeValue, 249 encodeEPOCH, 237
CDFgetDataTypeValue, 250 encodeEPOCH1, 237
CDFgetDecodingValue, 250 encodeEPOCH16, 241
CDFgetEncodingValue, 251 encodeEPOCH16 _1, 241
CDFgetFormatValue, 251 encodeEPOCHI16_2, 241
CDFgetMajorityValue, 252 encodeEPOCH16_3, 242
CDFgetSparseRecordValue, 252 encodeEPOCH16_4, 242
CDFgetStringChecksum, 252 encodeEPOCH16_x, 242
CDFgetStringCompressionType, 252 encodeEPOCH2, 237
CDFgetStringDataType, 253 encodeEPOCH3, 238
CDFgetStringDecoding, 253 encodeEPOCH4, 238
CDFgetStringEncoding, 253 encodeEPOCHX, 238
CDFgetStringFormat, 253 encodeTT2000, 247
CDFgetStringMajority, 253 EPOCH
CDFgetStringSparseRecord, 254 computing, 236, 240
CDFvarClose, 174 decomposing, 237, 241
CDFvarCreate, 174 encoding, 237, 238, 241, 242
CDFvarGet, 176 parsing, 239, 240, 243, 244
CDFvarHyperGet, 177 utility routines, 236

301

computeEPOCH, 236
computeEPOCH16, 240
encodeEPOCH, 237
encodeEPOCHI, 237
encodeEPOCHI16, 241
encodeEPOCH16_1, 241
encodeEPOCH16_2, 241
encodeEPOCH16_3, 242
encodeEPOCH16_4, 242
encodeEPOCH16_x, 242
encodeEPOCH2, 237
encodeEPOCH3, 238
encodeEPOCH4, 238
encodeEPOCHXx, 238
EPOCH16breakdown, 241
EPOCHbreakdown, 237
parseEPOCH, 239
parseEPOCH1, 239
parseEPOCHI16, 243
parseEPOCH16 1, 243
parseEPOCH16 2, 244
parseEPOCH16 3, 244
parseEPOCH16 4, 244
parseEPOCH2, 239
parseEPOCH3, 240
parseEPOCH4, 240
EPOCH16breakdown, 241
EPOCHbreakdown, 237
Equivalent data types, 22
examples
CDF
-0.0 to 0.0 mode
set, 67
attribute
name
get, 207
scope
get, 212
checksum
set, 60
compression
get, 39
compression cache size
set, 62
Copyright
get, 41
decoding
get, 42,43
encoding
set, 63
file backward
set, 64
global attribute
entry
data type
get, 203
get, 201
entry
number of elements
get, 204
number of entries
get, 216

302

inquiring, 54

number of attributes

get, 217

read-only mode

set, 68
rVariable attribute
entry
get, 209
entry
data type
get, 210
stage cache size
set, 69
validate
set, 70
validation
get, 50
version
get, 51
zMode
get, 52
set, 70

CDF

-0.0 to 0.0 mode
get, 47
attribute
delete, 198
attribute
create, 197
data scope
set, 233
existence
confirm, 193
information
get, 222
number
get, 208
rename, 230
cache buffer size
get, 49
cache size
get, 37
set, 59
checksum
get, 38
close, 30
compression
set, 61
compression cache size
get, 40
compression information
get, 40
create, 33
decoding
set, 62
delete, 34
file backward
get, 44
format
get, 44, 45
set, 65, 66
gentry

existence
confirm, 194
global attribute
entry
delete, 199
global attribute
entry
information
get, 223
entry
specification
set, 231
write, 227
last Entry number
get, 204
majority
get, 46
set, 66
max record numbers
zVariables and rVariables
get, 86
name
get, 47
number of global attributes
get, 220
number of rVariables
get, 86
number of variable attributes
get, 221
number of zVariables
get, 87
open, 57
read-only mode
get, 48
rEntry
existence
confirm, 195
rVar
close, 71
rVariable
data records
delete, 81, 82
existence
confirm, 73
pad value existence
confirm, 74
rVariable
blocking factor
get, 89
set, 153
cache size
get, 90
set, 154, 160
compression
get, 91
set, 154

COIIIpI'eSSiOl’l reserve percentage

get, 103

set, 159
create, 77
data records

block

allocate, 151
sequential
allocate, 152

data type

get, 93

set, 155
data value

write, 141
data value

sequential write, 144
data value

get, 104
data values

write, 135
delete, 80
dimension sizes

get, 103
dimension variances

get, 94

set, 156
dimensionality

get, 107
information

get, 95, 117
inquire, 138

maximum number of records allocated

get, 96
maximum record number
get, 96
multiple values or records
get, 131
name
get, 97
number of elements
get, 98
number of initial records
set, 157
number of records allocated
get, 88
number of records written
get, 99
pad value
get, 100
set, 142
read position
get, 105
record data
get, 101
write, 143
record variance
get, 102
set, 158
sequential location
set, 161
sparse record flag
set, 162
sparse record type
get, 108
variable data
get, 92

rVariable attribute

entry

delete, 199
rVariable attribute
entry
information
get, 225
entry
number of elements
get, 211
specification
set, 232
write, 228
last Entry number
get, 205
number of entries
get, 218
rVariables
maximum record number
get, 106
select, 57, 58
Variable number
get, 109
zEntry
existence
confirm, 196
zVar
close, 72
zVariable
data records
delete, 84, 85
existence
confirm, 75
pad value existence
confirm, 76
zVariable
blocking factor
get, 111
set, 164
cache size
get, 112
set, 165,171
compression
get, 113
set, 166

COIIIpI'eSSiOl’l reserve percentage

get, 126
set, 170
create, 79
data records
block
allocate, 162
sequential
allocate, 163
data type
get, 115
set, 167
data value
sequential write, 148
write, 145
data value
get, 127
data values
write, 136

delete, 83
dimension sizes
get, 116
dimension variances
get, 116
set, 168
dimensionality
get, 121
inquire, 140
maximum number of records allocated
get, 118
maximum record number
get, 119
multiple values or records
get, 133
name
get, 120
number of elements
get, 122
number of initial records
set, 169
number of records allocated
get, 110
number of records written
get, 122
pad value
get, 123
set, 146
read position
get, 128
record data
get, 124
write, 147
record variance
get, 125
set, 170
rename, 149, 150
sequential location
set, 172
sparse record flag
set, 173
sparse record type
get, 130
variable data
get, 114

zVariable attribute

entry
delete, 200

zVariable attribute

entry
get, 213
entry
data type
get, 214
information
get, 226
number of elements
get, 215
specification
set, 234
write, 229
last entry number

get, 206
number of entries
get, 219
zVariables
maximum record number
get, 129
closing
CDF, 29
rVariable, 174
creating
attribute, 185
CDF, 32
rVariable, 175
deleting
CDF, 34
get
CDF
Copyright, 27
library version, 28
data type size, 26
rVariable
data, 177
inquiring
attribute, 189
entry, 186
attribute number, 190
CDF, 35, 53
error code explanation text, 29, 36
rVariable, 180
variable number, 181
interpreting
status codes, 235
opening
CDF, 56
reading
attribute entry, 188
rVariable values
hyper, 178
renaming
attribute, 192
rVariable, 184
status handler, 235
writing
attribute
gEntry, 191
rEntry, 191
rVariable
multiple records/values, 179
rVariable, 183
Exception handling, 23
Fixed statement, 22
getAttrgEntryNumElements, 203
getAttrMaxgEntry, 204
GLOBAL_SCOPE, 12
HOST _DECODING, 9
HOST_ENCODING, 8
HP_DECODING, 9
HP_ENCODING, 8
IBMRS_DECODING, 9
IBMRS_ENCODING, 8
id, 5
inquiring

305

CDF information, 35
Interface, 19, 25
Leap Seconds, 17
Library
error text
inquiring, 28
Library
Copyright
inquiring, 27
version
inquiring, 27
Limitation
dimensions, 23
limits
attribute name, 13
Copyright text, 13
dimensions, 13
explanation/status text, 13
file name, 13
parameters, 13
variable name, 13
Limits of names, 13
MAC_DECODING, 9
MAC_ENCODING, 8
MULTI_FILE, 6
multidimensional arrays, 22
namespace, 1
NEGtoPOSfpOoft, 13
NEGtoPOSfpOon, 13
NETWORK_DECODING, 9
NETWORK_ENCODING, 8
NeXT_DECODING, 9
NeXT_ENCODING, 8
NO_COMPRESSION, 11
NO_SPARSEARRAYS, 12
NO_SPARSERECORDS, 11
NOVARY, 10
PAD_SPARSERECORDS, 11
parseEPOCH, 239
parseEPOCH]1, 239
parseEPOCH16, 243
parseEPOCH16_1, 243
parseEPOCH16_2, 244
parseEPOCH16_3, 244
parseEPOCH16_4, 244
parseEPOCH2, 239
parseEPOCH3, 240
parseEPOCH4, 240
parseTT2000, 248
Passing arguments, 19
PC_DECODING, 9
PC_ENCODING, 8
PREV_SPARSERECORDS, 11
programming interface
CDFid, 5
CDEF status, 5
READONLYOoff, 12
READONLYon, 12
ROW_MAIJOR, 10
rVariables
data records
deleting, 80, 81

rVariables allocation, 150, 151

blocking factor writing initially, 157
inquiring, 88 renaming, 149, 183
resetting, 152 sequential position

cache size inquiring, 105
inquiring, 89 resetting, 160
resetting, 153, 159 sparse records type

check existence, 73 inquiring, 107

close, 174 resetting, 161

compression writing
inquiring, 90 multiple values or records, 134
reserve percentage record data, 142

inquiring, 102 sequential data, 143
resetting, 158 single data, 140
resetting, 154 single value, 182

creation, 76, 174 written records

data specification inquiring, 99
resetting, 155 sample programs, 3

data type SGi_DECODING, 9
inquiring, 92 SGi_ENCODING, 8

deleting, 79 SINGLE FILE, 6

dimension sizes sparse arrays
inquiring, 103 types, 12

dimension variances sparse records
inquiring, 93 types, 11
resetting, 156 status, 5

dimensionality status codes
inquiring, 107 constants, 6, 235

hyper put CDF OK, 6
multiple values or records, 178 CDF_WARN, 6

hyper read error, 257
multiple values or records, 177 explanation text

information inquiring, 36
inquiring, 94 max length, 13

inquiring, 137 informational, 257

maximum written record interpreting, 235
rVariables, 106 warning, 257

name SUN_DECODING, 9
inquiring, 97 SUN_ENCODING, 8

number of elements TT2000
inquiring, 98 computing, 245

pad value decomposing, 246
checking existence, 73 encoding, 247

pad value info, 248
inquiring, 99 parsing, 248
resetting, 141 utility routines, 245

reading CDFgetLastDateinLeapSecondsTable, 248
multiple values or records, 130 computeTT2000, 245
one record, 100 encodeTT2000, 247
sequential data, 104 parseTT2000, 248
single value, 91, 176 TT2000breakdown, 246

record numbers TT2000breakdown, 246
allocated records VARIABLE SCOPE, 12

inquiring, 88 variables
maximum allocated records compression
inquiring, 95 types/parameters, 10
maximum written record data specification
inquiring, 96 data type

record variance inquiring, 180
inquiring, 101 number of elements
resetting, 158 inquiring, 180

records dimensionality

306

inquiring, 52
inquiring, 52
majority

considering, 9

constants, 9

COLUMN_MAIJOR, 10

ROW_MAIJOR, 10
maximum records
inquiring, 52

name
inquiring, 180
naming, 76, 78, 175
max length, 13
records
sparse, 11
sparse arrays
types, 12
variable number
inquiring, 108, 181
variances
constants, 10
NOVARY, 10
VARY, 10
VARY, 10
VAX_DECODING, 9
VAX_ENCODING, 8
VB-CDF Interface, 19, 25
zMODEOoff, 12
zMODEonl, 12
zMODEon2, 12
zVariables
data records
deleting, 83, 84
zVariables
blocking factor
inquiring, 110
resetting, 164
cache size
inquiring, 111
resetting, 165, 171
check existence, 74
compression
inquiring, 112
reserve percentage
inquiring, 126
resetting, 170
resetting, 165
creation, 78
data specification
resetting, 166
data type
inquiring, 114
deleting, 82
dimension sizes

307

inquiring, 115
dimension variances
inquiring, 116
resetting, 167

dimensionality
inquiring, 120
information
inquiring, 117
inquiring, 139
name
inquiring, 120
number of elements
inquiring, 121
pad value
checking existence, 75
pad value
inquiring, 123
resetting, 146
reading

multiple values or records, 132

one record, 124
reading data, 113
record numbers

allocated records

inquiring, 109
maximum allocated record
inquiring, 118
maximum written record
inquiring, 119
written records
inquiring, 122
maximum

rVariables and zVariables, 128

record variance
inquiring, 125
resetting, 169
records
allocation, 162, 163
writing initially, 168
renaming, 150
sequential data
reading one value, 127
sequential position
inquiring, 128
resetting, 172
sparse records type
inquiring, 129
resetting, 173
writing

multiple values or records, 135

record data, 147
sequential data, 148
single data, 144

